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Physics Background 
 
Almost all our knowledge about the stars and their chemical composition comes from the 
interpretation of the absorption lines that are formed in the outer layers of the stars. In this region, 
called the stellar atmosphere, the density and temperature drop steeply from the high values of the 
stellar interior to the low ones of interstellar space. From the outside, one is able to look into such a 
layer down to the depth where the total absorption along the line of sight has become large. One 
defines an "optical depth" which then becomes unity. The absorption coefficient of the gas varies 
strongly with wavelength, especially close to ionization thresholds and lines; it depends not only on 
the chemical composition of the gas, but also on the state of ionization and excitation, which is a 
function of density and temperature. This means that at different wavelengths we are looking into 
different layers of the atmosphere. E.g. in the centre of a line the gas absorption is high; so the 
observable photons come from layers higher up, and hence from cooler layers than the photons far 
away from the line centre, for which the atmosphere is more transparent. Thus the intensity at the 
line centre will be lower: an absorption line is formed. 
 
Because the strength and the shape of a line are sensitive to the physical conditions prevailing in the 
regions where the line is formed, the analysis of the line spectrum of a star yields much important 
information, but is also quite involved to compute. This involves the radiative transfer, the 
broadening mechanisms of the line, and the excitation of the ions and the ionization of the elements. 
In this program, we concentrate on the first two items, but later an extension can be written to deal 
with the other aspects as well. If one adds more details of line broadening theory, i.e. using a more 
complicated line profile function, and of atomic physics this program can perform the same tasks as a 
"professional" one. 
 

Radiative Transfer in a Plane-parallel Atmosphere 
 

The Equation 
 
In most stars, the atmosphere is but a thin layer; in the Sun it is only a few hundred kilometres thick, 
negligibly thin compared to the radius of 700000 km. Thus we may neglect the curvature, and 
represent the atmosphere by a flat (plane-parallel) layer. We shall also assume that the physical 
conditions do not change in horizontal direction, i.e. there are no star spots, protuberances, granular 
cells, etc. All these features, which a real star like the Sun has, we shall neglect. Thus we need to 
know the physical quantities only a a function of the vertical coordinate, which we choose to be the 
depth t – using the height is equally suitable – starting from the position of the observer. 

However, rather than using the linear depth, it is more convenient to define the optical depth , 
since this is the scale which measures how far the photons travel: 

 



where  is the local absorption coefficent of the gas at each position. Since it changes with 

wavelength, so does the optical depth. Thus one selects a standard wavelength 0 (for stars like the 
Sun: 5oo nm) which represents the stratification of the physical parameters in this atmosphere well. 
Then all quantities (density, temperature, electron pressure, absorption coefficients) are given as 

functions of this standard optical depth scale 0:   (, 0)  = ... 
This can be seen in the table for the atmospheric model for the Sun. It is merely a convenience.  
                                                
The computation of absorption coefficients from atomic and molecular processes is quite complex, 
so let us assume for the moment that they are given somehow. Then we next compute the 

monochromatic optical depths  for all layers at the particular wavelength we are interested in 

 
 

 
The geometry of the plane parallel atmosphere 
 
 
Then the formal solution for the radiative transfer in a planar slab gives the specific intensity 

I(at the position of the observer (i.e. 0 = 0) as 
 

 
 

 
 
 



The total vertical optical depth of the slab is 0
max, is the angle of the line-of-sight with the vertical. 

The first term describes how any light illuminating the slab from the bottom (intensity I(, , 0
max)) is 

attenuated by the absorption of the slab. Clearly, if the slab is optically thicker than about 30, one 
may neglect this contribution altogether. Thus the intensity from a stellar atmosphere is determined 
by the second term. Each layer contributes to the total radiation by the local {\bf source function}, 
attenuated by the absorption on the way to the observer, i.e. to the stellar surface. The source 
function depends on the local temperature, and will be discussed somewhat later.  
 
 

How to Compute it 
 
The evaluation of the integrals is done numerically. The atmosphere and the physical variables are no 

longer considered on the continuous optical depth scale 0, but at a number of discrete points in the 
atmosphere. The accuracy and reliability of the results are strongly influenced by a proper choice of 
this grid. For our problem, the grid points are best placed evenly on a logarithmic scale, such as 
shown in the model atmosphere results. However, one must always verify that the particular grid 
chosen is good enough for the purpose. 
 
There are a number of numerical integration prescriptions, with various accuracies, such as 
Simpson's rule or Gauss' formulae, or more sophisticated ones, usually available from software 
packages. However, the trapezoidal rule is simple to use, reliable even with strange functions, and 
accurate, if the function is given at a sufficient large number of grid points, if the grid is fine enough. 
Then the integral is replaced by a sum 
 

 
over the function given at the n grid points xi – which need not necessarily be equally spaced – 
multiplied by the integration weights 

 
If one later wishes to take a different scheme, one changes the prescription for the integration 
weights. In the depth grid for a stellar atmosphere, it is not necessary to extend the grid to zero and 
infinity, if the contributions to the intensity by the regions of low optical depth are kept small by 

choosing a lower boundary 0(1) such that the monochromatic optical depth (1) remains smaller 

than say 0.01 for all wavelengths. Similarly, the upper boundary 0(n) should be chosen that the 

atmosphere is sufficiently optically thick (say  > 30) at all  wavelengths, since the contributions of 

these deeper layers to the emergent intensity go like exp(-0 (,n)). 
 

Tests 
 
This part of the program described so far can be written first, and should be tested thoroughly, 
before we take the next steps.  Here are some hints how to do it: 

 The integration of the monochromatic optical depths should return the standard optical 
depth scale for all layers, if one computes it at the reference wavelength. 



  For a constant 0) = k and a constant source function S ≡ S0 one can solve the 
radiative transfer equation analytically: 

 
and the program should reproduce this formula. Eventually the deviations from it give an 
indication of the accuracy of the program. 

 Again with constant absorption coefficient ratio k and with a linear source function              

S(0) = S0 + S10 the radiative transfer has this analytical solution:  

                                                 
      Note that the intensity depends on the angle and opacity ratio k, but not on the opacities. 

 

The Continuum Spectrum 
 

The Source Function 
  
It is a very good approximation in normal stellar atmospheres for most cases to assume local 
thermodynamic equilibrium (LTE), which means that the source function – i.e. the ratio of emission 
and absorption coefficients – is equal to the Planck function of the local temperature T, given at 
reference optical depth: 
 

 
 

The index  indicates that the radiative quantities (source function and intensities) are given per unit 
wavelength interval.  If one prefers to measure intensities per unit frequency, one obtains from  

: 
 

 
    
This should be straight forward to program, but if you are not very familiar with Planck's function, 
you should check the results from the program with what you calculate by 'hand'. Also, it is a good 
idea just to plot a function to see whether it looks as shown in a textbook. In doing so, you can 
observe Wien's shift law, which says that the maximum of the curve shifts toward shorter 

wavelengths when the temperature is increased (max T = const.). 
 
If you find it necessary to cut computing time, you may use the various asymptotic forms, e.g. for low 
frequencies one can expand the exponential function into a Taylor series. The first order 

approximation yields an expression B T which is commonly used in radio astronomy. Also note that 

exp(-x)  0 for x > 50. This saves calling the exponential function unnecessarily, which may take the 
time of 30 additions or more. 
 
The temperature stratification in the atmosphere could initially be some simple analytical formula 

T(0), see below, or eventually taken from a model atmosphere. The data is usually given as a table, 
so either one searches and interpolates in these tables, or takes the trouble fitting a formula to the 
data. Do as you like.   
  



Atomic Absorption 
 
Atoms and ions absorb photons over a continuous spectra range, when the energy is high enough to 
eject an electron in a bound state from the atom, thereby making it a free electron. The absorption 
coefficient due to this bound-free transition or photoionization can be well described by: 

 
Here B is the background absorption of all the other atoms and processes, T the absorption at the 

ionization threshold wavelength ion. As can be seen, the absorption is largest near the threshold, 
and decreasing quickly away from it. 
  

Computing the Spectrum 
 
Even if you have carefully tested each part of the program separately, you must not refrain from 
checking the whole system. Simple models for which strict analytical solutions can be obtained are 

preferred, such as S(0) = S0 + S10$. Of course this can be done only to a certain extent. For more 
sophisticated tests, one has to rely on comparison with results obtained with other programs, e.g. 
from the literature. If the program so far works satisfactorily, you are able to study a few basic things 
in stellar atmospheres: 
                                                 
For a first inspection of how this absorption feature changes the spectrum of the atmosphere, it is 
sufficient to assume that the absorption coefficients are independent of height in the atmosphere, 

set B = 1 and vary the ratio T/B. If the temperature drops with height, you should see a step at the 
threshold wavelength, with a lower side at shorter wavelengths. Now turn the temperature upside 
down, what do you get? If you assume a constant temperature in the whole atmosphere, can you 
guess what will happen? Why is that so? 
 
The continuum spectrum of stars can be computed roughly, simply by scaling the model temperature 
structure of the Sun to the particular effective temperature. Since our expression for the continuum 
opacity is not temperature sensitive, the spectra cannot be compared with real stellar spectra yet. 
They are essentially the source function of the layer where the radiation comes from. Where is this 
layer? To study this, plot the expression under the integral in the solution of radiative transfer as a 

function of 0. How does this contribution function look like, and what does it tell you? How and why 
does it differ short- and longward of the ionization threshold? 
 
Now vary the angle θ under which you look into the atmosphere. How does the spectrum change? 
How do the contribution functions change, and what does it mean? The change of the intensity with 
angle can be observed in the Sun: Observing at the centre of the Sun's disk (θ = 0) and near the limb 

(θ   90°) gives information about the temperature stratification in the Sun's atmosphere. The Sun 
shows a limb-darkening. What does this tell you about the temperature gradient? 
  

The Line Spectrum 
 

Line Profile Function and Absorption Coefficient} 
 
To include the effects of atomic or ionic lines on the spectrum, we have to add to the absorption 
coefficient at each wavelength the contribution by the line: 

 
 



For simplicity, let us deal with a single line only: Then the additional absorption coefficient 
 

 
depends on the line profile function phi of the line centered at wavelength L, and on a factor kline 
which is proportional to the number of atoms present that are able to absorb line photons. For the 
moment, let us take this as a given or free variable; later we shall compute it properly. 
The line profile function 

 
 

is a function of the wavelength offset from the line centre x = | - l|/ΔD(0) measured in units of 
the Doppler width   

 
 
This width is the wavelength shift due to Doppler effect, caused by the thermal motions of the 
absorbing atoms in the atmosphere – hence its variation with depth – and by any "microturbulent" 
motions as well. k is Boltzmann's constant, c the speed of light, and m the mass of the absorbing 
atom.  
 

The profile function also depends on a parameter a = Δdamping /ΔD . See below for explanations. 
 
The profile function given above is a simple approximative formula for what is called the Voigt 
function H(a, x). It is valid for 1E-6 < a < 0.1. Professional programs use better but more complicated 
and time consuming representations.   
 

Physics Background 
 
Each atom is considered as a driven, harmonic oscillator. Then the absorption coefficient is given by a 
Lorentz curve that describes the resonance response of the oscillator: 

 
 

with the radiative damping width Δdamping about the centre frequency L. The damping width is 
determined by how quickly the atom absorbs or emits energy. In the classical picture, it is inversely 
proportional to the Q-factor, in the quantum mechanical picture it is the inverse lifetime of the atom 
in the excited state. For common lines – permitted electrical dipole transitions – this lifetime is about 

10 ns, so Δdamping  =  1e8 Hz. Thus an optical line at $\lambda_L = 600$~nm has a natural line width 

of Δdamping  = Δdamping L
2/c = 0.0001 nm. 

 
The thermal motions of the atoms of the gas in the stellar atmosphere cause an additional 
broadening of the line: If the natural line profile was a delta-function, the Doppler shifts of the 



atoms, which pass the line of sight with thermal velocity would make the absorption profile for a 
volume element of stellar matter to be a Gaussian curve with a width equal to the Doppler width  

ΔD. 
 
The superposition of the two broadening functions results in the Voigt function $H(a,x)$. In our 
approximative formula one notes that near the line centre Doppler broadening is dominant  
("Doppler core") and far away the Lorentz curve takes over ("damping wings"). In the transition part 
(1<x<4), the formula provides  a simple, fairly smooth transition between the two curves. 
 
If you compute the Doppler width and compare it to the natural line width, you find that the latter is 
much smaller. However, a line can also be broadened by collisions with other atoms, which disturb 
the atom while it is in its excited state. Thus the life time is effectively shortened, and consequently 
the line is broadened. For some lines, the parameter a is as large as 0.1. Since it is extremely difficult 
to calculate the broadening coefficient for a line, one often is forced to determine it from a 
comparison of the observed solar spectrum with a computed one. For our purposes, we may safely 
assume that a is a free parameter. Maybe you can try to adjust it, until you can match the solar 
spectrum given here. 
 
There are other broadening mechanisms as well: lines of hydrogen are broadened by the Stark effect, 
i.e. the atoms are disturbed by the change of the electric field, as neighbouring ions pass by. 
 
When people tried to reproduce the lines observed in stars by models, it was noticed that one 
frequently and systematically falls short to match the widths. Because one can see in the Sun a 
variety of motions, systematic or turbulent, with various scale lengths, one expects that these 
motions probably are also present in the atmospheres in other stars, and influence the line spectra. If 
there are small scale turbulent motions, they would broaden a line just like thermal Doppler   

broadening. So this can be taken into account simply by adding the microtubulent velocity t to 
expression for the Doppler width. Velocities of the order of 1~km/s were found necessary.  
 
At this stage, the program can calculate the profiles of lines from the stellar atmosphere. For the 
solar spectrum, we may use the model atmosphere of Kurucz to give us the temperature and density 

stratification, and the absorption coefficient in the continuum. If we allow kline, a, and t to be free 
parameters, we can try to reproduce some lines observed in the solar spectrum. Please do it. To get 
experience of how the 3 parameters change the line strength and shape, vary them systematically. 
When comparing line profiles, you will find it helpful to display and print out the data as a nice plot.  
 
 

Computing the Curve of Growth 
 
When you investigated the influence of the parameters on the observed line shape and strength, you 
may have noticed that the main parameters which governs how strong and big the line comes out, is  
kline. Let us study this more closely. 
 
If one bases a stellar analysis on the interpretation of line profiles, one needs to observe the stars at 
high spectral resolution, which implies long observing time. However, even if one cannot resolve the 
line profiles fully, one is able to extract most of the useful information: One considers how much of 
the continuum light the line is taking away. We define the {\bf equivalent width} by integrating over 
the wavelength 

 
 



Then the curve Wl as a function of kline$ is the curve of growth of the stellar atmosphere. The 
damping parameter a serves as a parameter. Though these curves can be computed for each stellar 
atmosphere separately, they always have the same character, and actually differ not much, even in 
details. 
 
The actual curve of growth shown in text books has a slightly different definition:  One plots 

log(Wl/ΔD) versus $log(kline/ΔD). This removes the dependence on ΔD and makes the curve more 
universal. 
 
There are three regimes: for small kline the line is weak, and its equivalent width grows in proportion 

to an increase of kline. Stronger lines saturate, and W increases only slowly with kline. In this part, the 

microturbulence t determines the level of the "plateau". If very strong lines also have strong 
damping, their equivalent width will increase more strongly, but it depends on a as well.  
 

 
The universal curve of growth (from Unsöld’s textbook (1955). 
 
 
To compute the curve of growth, one has to calculate a large number of line profiles, and integrate 
them over the wavelength. The continuum intensity Icont is computed in the line centre, and can be 
taken as constant over the line width. The integration limits should be chosen sensibly. For strong 
lines they must cover a sufficiently large interval, for weak lines it is sufficient to integrate over a few 
Doppler widths. Since the integrant may change quite strongly at certain wavelengths, but only 
slowly at others, you might well try to design an integration routine that automatically adjusts the 
step width....  
 



Because the curve of growth is a universal one, your results should compare well with those shown in 
text books.  Also, they should not be very sensitive to the temperature or other details of the 
atmosphere. Is it sensitive to the temperature gradient? 
 
 

Curve of Growth of Interstellar Absorption Lines 
 
Before one attacks the above problem, it is very useful to do a simpler case: In the spectra of stars 
and quasars one observes absorption lines of ions and atoms which cannot be present in the stellar 
atmospheres themselves, and often much narrower than normal stellar lines. They are caused by 
absorption in the interstellar or intergalactic medium between the star (or quasar) and us. 
Calculation of their profiles and the curve of growth is much easier than for a stellar atmosphere, as 
the re-emission (i.e. the source function) can be neglected. Consider the column of gas along the 

line-of-sight: we view it with θ = 0 and we suppose its total optical depth is . The formal solution 
gives for the observed intensity simply 

 
   
Note that we do not need to know how $\kappa$ varies along the line-of-sight. What matters, is the 

total optical depth. Let us take its value at the line centre 0 as a free parameter. If we know or 
assume the profile function for the atomic absorption (see above) then the above equation permits 

to compute the observed line profile. How does it change with 0? 
 

 
 
Show that for a purely Gaussian absorption profile of width b one gets: 

 
 

W /b is a unique function of 0/b. This permits to compute a universal relation – often called the 
saturation curve – and use it to determine from the observed equivalent width the optical depth of 
the intervening medium. When the atomic absorption coefficient for the lines are known from 
atomic physics, one determines the column  densities of the particular atoms, and thus derive the 
chemical composition  of interstellar and intergalactic gas clouds.  
 

  



Project: Absorption Lines from a Chemically Layered Atmosphere  
 
Here is a small research problem that I'd like you to attack with your program: As you can read in the 
Rapport du stage by Hélène Perrin (from the class of 2000/01), there are stars whose atmosphere is 
not chemically homogeneous, and one wishes to know whether some theories for the stratification 
of the chemistry are correct. 
 
In her stage she investigated how the line profile changes if one assumes that the line opacity kline is 
not constant (as it approximately is in a normal atmosphere) but that it has a strong stratification. 
She studied simplified models with 

 
  
with some value of K. She found that one can easily explain that the line has a certain central depth 

(her Fig.19) or a certain equivalent width (her Fig.21) etc. for an infinite number of combinations of a 

and b. So one can explain an observation not only by the line opacity being large only in the upper 
part of the atmosphere, but equally well by a model where the line opacity is large only in the 
bottom part, or in a narrow zone in the middle of the atmosphere! What you can do is this 

 recalculate her models and check whether you get the same results 

 with this simple model one can obtain analytical solutions (see the Rapport). Push this a bit 
further!  

 I have a suspicion that if you plot lines of equal column density (i.e. the integral of kline over 
all depths, you get very similar contour lines. True? Are the contours the same or are they 
just similar? 

 compute three different stratified models  (line opacity at high layers, at low layers, and in 
the middle) which all should give the same central depression (or equivalent width etc. ...). 
How do the line profiles differ? What accuracy would be needed to distinguish between 
these models by observations?              
 
 
 

 
 
  



Model of the solar atmosphere (R.L.Kurucz, 1979, ApJ.Suppl. 40, 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 


