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1. Physical Background

An HII region is the ionized volume of a gas cloud or the interstellar medium
around a hot star. The gas is ionized by the ultraviolet radiation (λ < 91 nm or photon
energy E > 13.56eV) emitted by the star. In a state of equilibrium, depending on
the number of these photons, the gas is ionized upto a certain radius RS , called the
Strömgren radius. We want to write a computer program that calculates the run of
ionization in such an HII region. We assume that the star (with radius R∗ ) has a
spectrum of a blackbody with temperature T∗ , and is placed into a (infinitely) large
cloud of pure hydrogen gas (density n particles per m3). Thus the gaseous nebula
will be spherically symmetric, and it suffices to calculate the ionization as a function
of distance from the central star only, i.e. we consider a one dimensional problem.
Starting at the inner radius Ri of the nebula which is at (or close by) the stellar
surface, we go out further in radial steps, calculating at each radius the balance of
photoionizations and recombinations of hydrogen and the attenuation of the starlight
by the absorption by hydrogen atoms between the stellar surface and the radius under
consideration. We break off the computation, if the outer limit of the ionized zone is
reached, i.e. when n(H+)/n(H0) = ξ is sufficiently small, for instance 0.001, or the
region is optically thick to the ionizing photons, e.g. τ(91nm) > 100.

2. The Equations

2.1 Ionization balance

Since we assumed equilibrium, so at every radius in the nebula the rate of pho-
toionizations must be equal to the recombination rate:

n(H0)

∞
∫

νH

4πJν
hν

a(ν)dν = n(H+)ne αB (1)

where n(H0), n(H+), ne are the number densities of neutral and ionized hydrogen and
electrons. νH = 3.29 1015Hz is the frequency of the hydrogen ionization threshold.
Jν(ν, r) is the mean intensity of the radiation field, per unit frequency interval, and
which is both a function of frequency ν and distance r from the central star. Far
away from the star, we can approximate:
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Jν(ν, r) =

(

R∗

2r

)2

Bν(ν, T∗) exp(−τ(ν, r)) (2)

The first factor describes the geometrical dilution of the radiation field as one moves
away from the star, the second is the star’s spectrum, which we assume to be a black
body:

Bν(ν, T ) =
2hν3/c2

exp(hν/kT )− 1
(3)

The third factor describes the attenuation of starlight by the intervening neutral
hydrogen, i.e. the loss of those photons which have alrady been used up for ionization.
τ(ν, r) is the optical thickness of this intervening layer of gas:

τ(ν, r) =

r
∫

Ri

κ(ν, r′)dr′ (4)

which is the integrated opacity

κ(ν, r) = n(H0)(r)a(ν) (5)

From quantum mechanics one can calculate the photoabsorption cross section (in m2)
for hydrogen:

a(ν) = 6.3 10−22 (ν/νH)
−3

From this one also computes the recombination coefficient αB(Te) which is a function
of the temperature Te of the electrons, as shown in this table (units are m3 s−1):

Te 5000 10000 20000 K

αB 4.54 2.60 1.43 10−19

There is a small trick here: in principle the radiation field not only consists of stellar
photons (Eq. 2), but also those emitted by the nebular gas itself after recombinations
directly to the ground state of the hydrogen atom. It is a good approximation to
assume that these diffuse photons are absorbed ”on the spot”; then one can show
that these photoionizations are balanced by the recombinations to the ground state,
and thus cancel each other in Eq. 1. This is why we need to consider here only the
sum of all recombinations to excited levels αB. Though we shall consider at first only
isothermal nebulae (Te = 12000 K), it is a nice exercise to write an interpolation
program for the above table ...

2.2 Charge Neutrality
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Since the plasma is always neutral, in every volume the sum of charges of all ions
is equal to the number of electrons. For a pure hydrogen gas, we simply have:

nion = n(H+) = ne (6)

2.3 Conservation of Particles

As there are no nuclear reactions involved here, the number density of of hydrogen
in all forms must be constant:

n(H0) + n(H+) = n(H) = n(r) (7)

and equal to the local hydrogen density n(r). For simplicity, we shall initially assume
that this density is independent of radius r, but it is worth experimenting with other
laws!

3. Method of Solution

3.1 Radial and Frequency Grids

In our mathematical description of the HII region, the physical quantities are
variables, the physical laws between them functions. However, in a numerical pro-
gram these cannot be described symbolically, as we do when solving an equation
analytically, but all physical quantities are represented by their values at discrete
points in time and space. Thus the HII region will be described by the number den-
sities of ions at certain radii {ri|i = 1, Nr}, the spectrum of the central star by the
intensity at a finite number of frequencies {νk|k = 1, Nν}, and the radiation field by
the mean intensity given at these radii and frequencies, and so on. The results of our
computations will obviously be better, if we use grids as fine as possible. But as a
doubling of the number of frequencies and radii will result in a four-fold increase of
the number of manipulations to be done, the computing time will go up. Thus one
has to choose wisely between the accuracy and speed.

There is no general rule how to make this decision, only tests can show how
you can get what you need. For our problem, the frequency grid will remain fixed
during the whole computation, and a good choice would be about 50 to 200 points
distributed logarithmically within the relevant frequency limits. The radial grid will
depend on the star and the gas density, and since the ionization changes drastically
in the transition zone between ionzed and neutral part, an automatic grid is the best
choice. You might like to try out a fixed radial grid with a given grid spacing.....

3.2 Local Ionization Equilibrium
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The central part of the program— and this is where one often begins with writing
the code, is the set of local equations for the ionization. At any radius r we solve Eqs.
1, 6, and 7 by a fix point iteration:
1. compute the photoionization integral β =

∫∞

νH
4πJνa(ν)dν/hν. Of course, there

is no such thing as ∞ in a numerical program; we have to choose a frequency
sufficiently high (νmax ≈ 2 1016 Hz) to ensure that the main contributions to
the integral are within the limits, and the integral is evaluated with sufficient
accuracy. The trapezoidal rule for the numerical integration is accurate enough,
but of course any higher order formula, such as Simpson’s or Gauss’ methods can
be employed.

2. choose a start value for ne: This is either
a) ne = n for the first radius r1 = Ri

b) ne = ne(ri) if the local ionization is not yet stable (see Sect. 3.4) below.
c) ne(ri) = ne(ri−1) for any radius ri use the value obtained at the previous

radius ri−1.
3. with ξ = β/(neαB) compute the densities n(H0) = n/(1 + ξ) and n(H+) =

nξ/(1 + ξ).
4. compute a new value for ne,new =

√
nionne

5. if the absolute relative difference |ne,new/ne − 1)| is still larger than a given tol-
erance (say 0.0001), we go back to Step (3), using the new electron density. This
iteration is a well behaved one (no oscillations, no extremely slow convergence
— but you better have a look for yourself and check the convergence behaviour).
It should converge with less than 10 steps. Since this iteration is done for every
radius, and is nested within another iteration (see below), make sure that the
program cannot enter an eternal loop without your notice.

3.3 How to Estimate the Next Radial Grid Point

To make our adaptive radial grid, we use the fact that the degree of ionization
ξ = n(H+)/n(H0) decreases monotonically as the distance from the star increases. If
we demand that ξ changes from one radius to the next one by about a factor δ (let
us say 0.8),

ξ(ri+1) = ξ(ri) δ (8)

we can estimate the next radius by linear interpolation from the present and the
previous radius:

(ri+1 − ri) = lg(δ)
ri − ri−1

lg(ξ(ri)/ξ(ri−1))
(9)

To do this, one needs to know the ionization in two points, i.e. the method cannot
be applied to determine the second radius. This is done differently, by setting r2 =
1.01 r1, for example.

Of course this is not the only way to determine the next radial grid point; for ex-
ample one can use the fact that the optical depth at the ionization threshold frequency
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increases monotonically with radius. Also, one may use higher order extrapolation
formulae. Though they may seem more accurate, they usually have the danger of
”swinging” outside the range of reasonable values, if no precautions are taken.

3.4 Optical Depth

Before we can solve the ionization equations at the next radial grid point, we
must know the optical depth (at all frequencies) of the radius ri+1, as it enters the
radiation field. This is done in two steps:

First we estimate from the previous radii the absorption coefficient at any fre-
quency by linear extrapolation

κe
i+1 = κi + (κi − κi−1)

ri+1 − ri
ri − ri−1

(10)

and the optical depth by integration using the trapezoidal rule

τ e(ri+1) = τ(ri) +
1

2
(κe

i+1 + κi)(ri+1 − ri) (11)

With these values the radiation field at ri+1 is computed and the ionization equations
are solved (see Sect. 3.2). From this one gets improved values for the absorption
coefficients

κi+1(ν) = n(H0)(ri+1)a(ν) (12)

with which one improves the optical depths

τ(ri+1) = τ(ri) +
1

2
(κi+1 + κi)(ri+1 − ri) (13)

This is done until the value of the ionization ξ(ri+1) has stabilized within a given
tolerance, say |∆ξ/ξ| of successive iteration steps less than 0.001. The iteration is
very quickly convergent. Note that this iteration encorporates the iteration for local
ionization balance, and one should take again care to prevent the occurrance of infinite
loops.

As before, the extrapolation (Eq. 10) does not work for the step from the first to
the second radius. Here we simple use κe

2 = κ1 and the optical depth τ e2 = (r2−R1)κ1.

3.5 Structure of the Program

1. Input routines for the model parameters, setting up the frequency grid, initializ-
ing constants, setting up the stellar spectrum, ...

2. Start at the inner radius: compute the mean intensities, set optical depths to
zero

3. Solve the ionisation balance (see Sect. 3.2)
4. Calculate local absorption coefficients (Eq. 5).
5. Improve optical depths (Eq. 13)
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6. Check for stability of ξ (This is not necessary for the first radius, since τ = 0 for
all frequencies. If ξ is not accurate enough, recalulate the mean intensities, and
go back to Step 3

7. Check whether the outer edge has been reached, either by sufficiently low ξ or
sufficiently large τ . If that is the case, stop the calculation, print out results, ...

8. Compute the next radial grid point (Eq.9).
9. Estimate absorption coefficients and optical depths for next radius (Eqs.10, 11).

10. Compute the mean intensities; go back to Step 3.

4. Tests, Hints, and Kinks

0. Before actually writing the program, do make a flow chart diagram in order
to understand the sequence of what is computed; a diagram of the program
structure and the data structure to find out, how the loops and iterations are
nested, which data from earlier parts you need at each section, which kind of
vectors and arrays you are going to need. This may seem bureaucratic, boring
or even old fashioned, but don’t start typing anything, before you are

absolutely clear about what you plan to do. Otherwise you may really end
up wasting much time in trying to find the logical errors, loopholes, and cul-de-
sacs of your hasty programming. Save yourself the frustration, disappointment,
and anger!

1. General Program Planning: It is a good idea to lay out the program as general
as possible. This makes it easier to include other effects, or to try out other
situations. E.g. keep the number of frequency points, the upper and lower
limits as parameters which are given values in the main program, rather than
being specified everywhere the frequency grid is used. Checking the program
for other kinds of stellar spectra can thus be done easily at any time. Or the
grid parameters can be changed, whenever a model with high accuracy is to be
computed.

2. Modular Construction: It is also a good idea to break up the program into
mathematically or physically sensible units. This allows a better testing of these
individual modules — and most of the time is spent in tracing an error — a more
flexible use of them for other purposes, and their exchange against improved or
alternative methods, improved data, other physical processes, etc. For example,
if the frequency integration is contained in an independent unit, one simply ex-
changes this against a more sophisticated method, if need arises, but without the
trouble of having to change the program at a dozen places. For testing, a simple
main program has to be written which supplies the neccessary input data to this
unit.

3. Check Everything by Hand: Often, we understimate our ingenuity to make small
logical mistakes or simple typing errors, which may cause faulty results. The
worst kind of mistakes are those which produce results that look as one would
expect them to be. Take the trouble of check everything the program does, until
you are sure it does only what you want it to do. In programs about physical
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things, basic physics must be obeyed: conservation of particles, energy, etc. Also,
all the simple and limiting cases which we do understand, must be reproduced
accurately.

4. Be highly skeptic of anything the program produces.
5. Numerical Integration: For our purpose, trapezoidal rule is of sufficient accuracy,

and simple to program. Please note that the end-points of the integration interval
are treated differently than the inner points. Please verify that all integration
routine do their job properly. This is done by integrating over a known func-
tion, so that the accuracy can be determined. Also, it is quite easy to compute
the photoionization integral by hand, if one takes a very hot stellar spectrum.
For hν ≫ kT∗ one can use Wien’s approximation of the blackbody spectrum
2hν3 exp(−hν/kT∗)/c

2. How many photoionizations per second take place in a
unit volume of the gas ? Any guess ?

6. BeWatchful of Iterations: Please check every iteration initially for its convergence
behaviour. A good idea is to put a limit on the number of iterations to be
performed. Also, a printout of everything happening for the last five iterations
maybe helpful when trouble arises. Especially when several iterations are nested
within each other, it is necessary to make sure that they do not end up in an
infinite loop. Provide written messages if something goes not normal.

7. When you are making tests, and later running the program for various situations
and parameters, try to keep a careful written record of what you do, noting input
parameters and results. This will make it easier for you later to compare results
with earlier ones, in case you have to hunt for an error that has crept in yesterday
when you “just changed a few things, almost nothing — but the program doesn’t
work any more”.

5. Some Tasks

The well known Strömgren radius RS is the radius upto which the gas around
the star is ionized. One computes it from the global balance of the number of ionizing
photons N the star emits per second and the total recombination rate in the ionized
sphere:

4πR2
∗

∞
∫

νH

πBν(ν, T∗)

hν
dν = N = 4π

RS
∫

R∗

αBnen(H
+)r2dr =

4π

3
R3

SαBn
2
e (14)

Because this formula has the character of a global conservation law, the program
should be able to reproduce it, for all nebular and stellar parameters. The deviation
gives an indication of the overall accuracy of the program.

Consider these two models:
(a) R∗ = 1R⊙ and n = 1010 m−3

(b) R∗ = 10R⊙ and n = 108 m−3
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both for a T∗ = 40000 K star. How large are the Strömgren radii? Now compare
the ionization structure, i.e. the run of ξ with radius, but measured in units of the
Strömgren radius.

6. Extension: Dust

In the infrared many HII regions show a strong continuum which is interpreted
as emission from warm dust particles of temperatures TD = 100...1000 K. Since this
emission comes from the same spatial extend as the optical and radio emission of the
ionized gas, the dust particles must be distributed throughout the ionized region, and
therefore will be able to absorb also ionizing photons. With the program we can easily
investigate how the presence of dust changes the structure of the HII region, and how
many of the photons are absorbed, if we add to the atomic absorption coefficient:

κ(ν, r) = n(H0)a(ν) + κD(ν, r) (15)

the opacity by the dust κD(ν) which may be expressed as

κD(ν) = nD(r) σabs(ν) (16)

the product of a frequency dependant absorption cross section σabs and the local
number density of the dust particles. For simplicity we shall assume that the dust to
gas ratio (nD/n) is constant everwhere in the HII region.

In the program, one only needs to setting up the frequency dependent κD(ν)
before starting the computations. To do this, one needs to specify the opacity at
some reference frequency, say ν0 and the frequency dependance, e.g. constant or
κD/κD(νH) ∝ ν. This opacity is then just added to the local absorption coefficient of
the gas. When one extrapolates the opacity to the next radial point, one should try
out whether it is better to extrapolate the total opacity or just the part from the gas.

Here are some tasks:
(a) For a fixed frequency dependence of κD one should investigate how the HII region

changes when the dust to gas ratio is increased starting from zero: Strömgren
radius, the volume of the ionized region. Which quantity is the important pa-
rameter which decides whether the HII region is dominated by dust or not? Hint:
print out the optical depths of gas and dust separately.

(b) Now try out various frequency dependances of κD and see how much the results
from (a) are changed.

(c) Now let’s make it more realistic: A typical interstellar dust grain has a radius
rD ≈ 0.3µm, and the dust to gas ratio (by mass ) in the interstellar medium
amounts to ρD/ρgas = 0.01. Let us assume that the grains are spheres of a
material like graphite (density 3000 kg m−3. The absorption cross section shall
be independent of frequency and very close to the geometrical cross section. The
exciting stars in the Orion nebula are stars of spectral type O, with a temperature
of about 40000 K and a luminosity of 106 times that of the Sun. The gas density
in the nebula is about 100 atoms per cm3. Is the Orion nebula dominated by
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dust or not? What fraction of the available stellar photons is absorbed by the
dust?

(d) The parameter space for our HII region models is three dimensional: T∗, R∗, n
are the parameters. Can you indicate in which parts of this space the HII region
(made of normal interstellar gas and dust, as above) are dust dominated and in
which parts they are not?

7. Extension: Helium

After hydrogen, helium is the most abundant element in gas of ”normal” chemical
composition: by number of particles, the ratio is He/H≈= 0.1. So it can be quite
important in the structure of an HII region or a planetary nebula. To incorporate it
in our program, we have compute the ionisation of He0, He+, and He++, and take
into account the contributions to the number of electrons and to the absorption.

7.1 Ionisation Equilibrium

Now there are these equations:

n(He+)ne α(He+) = n(He0)

∞
∫

ν
He0

4πJν
hν

a(He0)dν (17a)

n(He++)ne α(He++) = n(He+)

∞
∫

ν
He+

4πJν
hν

a(He+)dν (17b)

from which one computes n(He+)/n(He0) and n(He++)/n(He+). With n(He0) = 1.0
one gets the other ionic densities, which then are renormalized to the number density
nA(He) of helium in all forms, in order to satisfy the conservation equation of particles:

n(He0) + n(He+) + n(He++) = nA(He) (18)

A(He) = 0.1 is the helium fraction of the gas. A(H) = 0.9 These ionisation
equations are solved parallel to those of hydrogen.

7.2 Contribution to Electron Density

When computing the number of electron, we now add those coming from helium:

nion = n(H+) + n(He+) + 2n(He++) (19)

ne,new =
√
nionne (20)

to modify the existing iteration.

9



7.3 Opacity

Depending on frequency, to the hydrogen opacity we add the appropriate helium
absorption coefficients:

κ(ν) =







n(H0)a(H) for ν < νHe0

n(H0)a(H) + n(He0)a(He0) for νHe0 ≤ ν < νHe+

n(H0)a(H) + n(He0)a(He0) + n(He+)a(He+) for νHe+ ≤ ν
(21)

since He0 and He+ absorb only for frequencies above the thresholds νHe0 and νHe+ .

7.4 Changes to the Method

Note that the addition of helium makes it necessary to put in the threshold
frequencies to the frequency grid, mark these points, and other organizational changes.

Now one has in addition to the transition zone H+ → H0 two more zones He++ →
He+ and He+ → He0, where the radial points have to placed with a finer spacing.
When determining the next grid point, one applies the same procedure already used
for hydrogen also to He0 and He+ separately. From these three guesses one selects
the most suitable one, e.g. the one with the smallest spacing. One has to try out the
best way, and also the most suitable values for δ(He0) and δ(He+), in order to find a
compromise between accuracy and short computation times. It is only the transition
zones where the corresponding optical depths are of the order of 1, that the grid has
to be placed carefully. If the optical depth for the important ion is very low, grid
spacing is rather uncritical. If it is high, then the density of the particular ion is very
low, so it can be set to zero, and the next lower ion becomes important when deciding
on how to place the grid points.

7.5 Atomic Data

Ionisation frequencies:
νHe0 = 5.9451 1015Hz
νHe+ = 1.3158 1016Hz

Photoionization cross sections (in m2):
a(He0) = 7.83 10−22(νHe0/ν)

2 (1.66− 0.66(νHe0/ν))
a(He+) = 1.5 10−22(νHe+/ν)

3

Recombination coefficients (in m3 s−1):

α(He+) = 4.3 10−19(Te/10
4K)−0.672

α(He++) = 1.09 10−19
√
x (0.4288 + 0.5 lnx+ 0.469x−1/3)

with x = hνHe+/(kTe)
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7.6 Some Tasks

Compute a series of nebulae aroung stars with different temperatures from 20000
to 200000 K. How do the Strömgren radii of H, He, and He+ change their positions
relative to each other? Can you say when the respective Strömgren formulae are not
valid? Explain why.

8. Extension: The Intensities of Hydrogen an Helium Recombination

Lines

When electrons recombine with ions of hydrogen and helium, they may leave the
resultant atom in an excited state, from which it will decay to lower states by emitting
photons of spectral lines, and finally arrive in the ground state. These recombination
lines can be observed in the optical wavelength region, for example the Balmer series of
hydrogen which corresponds to the transitions to the first excited level (the principal
quantum number changes from n = 3, 4, 5, .... → 2. In the infrared there are the
Paschen (n → 3) and the Brackett series (n → 4). From neutral helium there are
several lines in the triplett and singlet series, and from ionized helium there is e.g.
the Paschenα line at λ4686Å.

Since most nebulae are optically thin for most of these lines, the luminosity Pline

of (i.e. the total power emitted by) an H II region in the line is simply the volume
integral over the emissivity jline:

Pline = 4π

∫ Rneb

R∗

jliner
2dr (22)

since we assume spherical symmetry. As the collision of an electron with the respective
ion is responsible for the emission process, the emissivity is proportional to the number
densities of electrons and ions, for example

jHeI 4471 = ....n(He+)ne

In the following table (from Osterbrock: Astrophysics of Gaseous Nebulae) the factors
of proportionality 4πj/(nionne) is given for the some hydrogen and helium lines as a
function of electron temperature Te, for others the ratio of the emissivity to that of
a principal line (such as Hβ, traditionally) are given. The emissivity depends also on
electron density, but only very weakly, so that we may well neglect this. Please find
nice fit formulae that reproduce the data from the table, so that you can compute the
emissivities form any electron temperature.
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λ Te = [K]
[Å] 5000 10000 20000 unit

4πjHβ/n+ne 4861 2.22 10−25 1.24 10−25 6.59 10−26 erg cm3 s−1

jHα/jHβ 6563 3.00 2.85 2.74
jHγ/jHβ 4340 0.460 0.469 0.476
jHδ/jHβ .... 0.253 0.259 0.264

4πjHeI 4471/n+ne 4471 1.17 10−25 6.08 10−26 2.95 10−26 erg cm3 s−1

jHeI 5876/j4471 5876 3.01 2.76 2.58

4πjHeII 4686/n+ne 4686 2.93 10−24 1.48 10−24 7.16 10−25 erg cm3 s−1
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9. Extension: Other Elements

Elements heavier than helium such as carbon, nitrogen, oxygen, etc. have very
low abunadances, typically 10−4 of hydrogen. Thus one can neglect their contributions
both to the electron density and the absorption coefficient. We only need to solve the
ionisation balances for all the ions i of an element such as oxygen:

ni+1ne αi = ni

∞
∫

νi

4πJν
hν

ai(ν)dν (23)

As done with helium, one computes all the ionic densities and scales them so that the
total number of oxygen ions is equal to the fraction of oxygen of the gas:

N
∑

i=0

ni = n(O) =
A(O)

A(H)
n(H) (24)

with the oxygen abundance A(O)/A(H). The atomic data are
νi Frequency of the ionization threshold of O+i.
αi = Ai(Te/10

4K)−Bi

ai(ν) =

{

0 for ν < νi

aoi

(

ν
νi

)−si (
βi + (1− βi)

(

νi

ν

))

for ν ≥ νi

i νi Ai Bi aoi βi si

0 3.3 0.3 0.678 2.5 4.0 1
1 8.5 2.0 0.646 8.1 2.45 2
2 13.3 5.1 0.666 3.5 1.3 2
3 18.7 9.6 0.670 1.1 1.82 3
4 2.75 12.0 0.779 0.78 2.6 3

unit 1015Hz 10−18m3s−1 10−22m2

10. Extension: Computing the Line Intensities

In the nebular gas there are a number ions which have energy levels that can be
excited by collisions with the electrons. The excited ions will decay by spontaneous
emission of photons, which escape from the nebula to form the emission lines we can
observe. Let us consider a 2 level model of ion of species i with ground state 1 and
excited state 2 with number density ni,2 of ions in the excited state: in equilibrium
there is a balance of the excitations and the deexcitations (spontaneous emission and
also collisional deexcitation):
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ni,1C12 = ni,2(A21 + C21) (25)

with the spontaneous transition probability A21 and the collisional rates Cik. Of
course, the conservation of number of ions demands:

ni,1 + ni,2 = ni (26)

where ni is the number of ions of species i, in all energy levels, which had been
computed earlier from the ionization balance in the last section.

Task: What this means is that ionization balance and excitation equilibrium can be
separated into two independent problems. This is not self-evident, so better
check this by computing all the rates between the energy levels, and compare
them with the photoionization and recombination rates. Assume some reasonable
model parameters and select a few representative distances from the central star.
The collisional excitation rate is given by:

C12 = C21

g2
g1

exp(−E12/kTe) (27)

g1 and g2 are the statistical weights of the ground and excited states; for simplicity
but without losing much of the physical realism we may set g1 = g2 = 1. E12 = hν12
is the energy difference between the levels, ν12 being the frequenmcy of the emission
line. The collisional deexcitation rate is given by

C21 = ne
8.629 10−12

T
1/2
e

Ω21

g2
(28)

The dimension of the Cs is inverse time. Ω21 is an atomic constant for this transistion,
the collision strength. It has been computed from a quantum mechanical treatment
of the collision process, we just take these results.

ion λ12 Ω21 A21

O0 630 0.4 0.006
O+ 373 1.5 0.0004
O++ 500 2.5 0.03

unit nm s−1

To compute the observable spectrum, one considers the emissivity j12 of the line
per unit volume, which is just the energy released by the emission process:

4πj12 = ni,2A21 hν12 (29)

Since a gaseous nebula usually is transparent for all these emission lines, we compute
the power P emitted in the line by the whole volume of the HII region:
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P12 =

∫

4πj12dV ol

= A21hν124π

RS
∫

Ri

ni,2(r)r
2dr (30)

as we had assumed spherical symmetry. In principle these computations have to be
done for all relevant energy levels and lines in all the ions. In the case of a two level
ion one can calculate the number density ni,2 of the excited ions directly from Eqs.
25 and 26.

11. Extension: Solving the Energy Balance

So far we have – for simplicity – assumed that the temperature of the electron
gas is given somehow, and constant everywhere in the nebula. It is not difficult to
compute the electron temperature from the thermal equilibrium between the heating
by photoionization and cooling by emission of the continuum and lines. When the
hydrogen atom (ionization energy hνH) is ionized by a photon of energy hν > hνH, the
excess energy h(ν − νH) is carried away by the photoelectron in the form of kinetic
energy. This is distibuted quickly by elastic collisions to the other electron, thus
heating the electron gas:

H = n(H0)

∞
∫

νH

4πJν
hν

(hν − hνH)a(ν)dν (30)

is the heating rate (energy per time and volume units). On the other hand, the gas
loses energy hνjk by the electron collisions exciting ions, which emit line photons.
The total cooling rate

K =
∑

jk

4πjjk + kTenen(H
+)β(Te) (31)

is the sum over all collisionally excited lines, and the second term describes losses by
the emission of hydrogen recombination lines and continua:

β(Te) = αB(1 + 0.16(Te/10
4K)) + βff (32)

The losses by emission of thermal Bremsstrahlung (in the radio and infrared regions)
are

βff = 1.42 10−40
√

Te (32)

11.1 Method of Solution
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Since by now you are well experienced, it may be sufficient to give just a sketch
of how this part is solved and put into the existing program: From the equilibrium
condition H = K the electron temperature Te at each radius in the nebula is deter-
mined by a Newton-Raphson or Regula Falsi iteration to find the zero of the function
H(Te)−K(Te) = 0. To do this, one computes the heating intergral H which is simi-
lar to the photoionization integral. The cooling function also has to be evaluated by
computing the local emissivity which depends on Te. With a guess value of Te = 104K
or the electron temperature from the previous radial point, one starts the iteration,
which continues, until the required accuracy is achieved.

This iteration must be successfully finished, before one goes to the next item,
the computation of the local absorption coefficient. So this part goes after Step (3)
in the program outline. However, since the recombination coefficients depend on
electron temperature, the ionization balance will also shift after a new value for the
temperature is found. So one has to solve ionization and energy balances consistently.
One may well solve them together, iterating in 2 dimensions for (ne, Te). However one
can also just introduce yet another iteration, solving ionzation and thermal balance
one after the other until all the values have stabilized. Do as you like.
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