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1. Physical Background

In the interstellar medium one finds a variety of regions with densities higher
than the surroundings. In these ”clouds” the gas is mainly in molecular state. The
molecules possess a number of rotational and vibrational energy states, transitions
between which are caused by collisions with other molecules and by absorption and
emission of photons of the ambient radiation field. This radiation field is partly due to
external sources — such as stars — but also affected by the absorption and emission
of the molecules themselves. Thus the state of excitation of the molecules is the
result of the interaction of radiation and matter, which has to be solved consistently.
Once one knows how many molecules are in each energy level, one can compute the
spectrum emitted by the cloud.

We shall consider a simple model of a spherically symmetric cloud composed of
H2 and CO, the most abundant molecules. The excitation of the rotational energy
levels of CO molecules at the centre of the cloud are to be computed by taking into
account all collisional and radiation processes. In principle, the population of the
energy levels and the radiation field depend on the position in the cloud, e.g. near the
outer rim the radiation field is more like the external one, and the excitation could
be higher than near the centre, where the external radiation has been attenuated
by absorption of the outer layers. We shall not attempt to solve this, as it would
be very time consuming. We rather assume that the state of the molecules at the
centre is more or less representative for the whole cloud. Then the computation of
the radiation field at the centre becomes rather simple. Then the solution of the level
populations consistent with the radiation field can be done within reasonable time.

Our aim is to investigate how the CO’s level populations depend on the basic
parameters of the external radiation field and of the clouds, i.e. the gas density and
the cloud radius. In particular we look for maser effects, and find those conditions
under which there are population inversions in the CO molecule. To do this, one is
not so deeply interested in details, say the exact shape of the emission line profiles,
but one must to be able to search through parameter space reasonably quickly. This
is why we limit ourselves to a rather unsophisticated model.

2. The Equations

2.1 The Level Populations
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The molecule’s energy levels shall be numbered 1, 2, 3, ... with the energies E1,
E2, E3, ... Then let ni be the number per unit volume of those molecules that are in
state i.

To compute the level populations {ni} we first consider how the number of
molecules in a level i is changed by the processes that change the molecule’s state
from i to k. Let the rate Rik be the number of these transitions per unit time. Then
niRik is the number of transitions i → k per unit time and volume, which cause
a de-population of the level i. But likewise, this is the populations rate of level k.
Summation over all levels k gives the total rate of change:

dni

dt
=

∑

k 6=i

nkRki − ni

∑

k 6=i

Rik (1)

where the first sum is over all populating transitions and the second over all de-
populating processes.

If we look for the equilibrium solution — i.e. we assume that all parameters of
the model do not change within the typical timescale of any of the transitions: Rik

is the inverse timescale for the process i → k — we demand that for all levels the
population is constant dni/dt = 0 for all i. Then the system of rate equations (Eq.
1) is a homogeneous system of linear equations for the number densities, which would
have an infinite number of solutions. The constraint that the total number of CO
molecules in all levels must be constant, as for a given chemical abundance ǫCO and
a (total) gas density ngas, supplies the missing equation. If one substitutes any single
rate equation by the conservation of numbers equation

∑

i

ni = n(CO) = ǫCOngas (2)

one now has a set of n equations for the n unknown level populations, which yields a
single solution.

2.2 The Rate Coefficients

The rate coefficient for excitation (i < k) is the sum of the absorption rate in
the line i → k and of excitation by collisions with other particles (here these are H2

molecules):

Rik = BikJik + Cik (3)

Processes that lead to deexcitation (i > k):

Rik = Aik +BikJik + Cik (4)

are: Spontaneous (A) and stimulated (B) emission of a line photon, and collisional
de-excitation (C).
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Between the three radiative rate coefficients the well-known Einstein relations
exist, which are purely atomic constants and independent of the physical conditions
which the molecules are subjected to. For i > k:

giBik = gkBki (5)

Aki =
2hν3ik
c2

Bki (6)

Because of this, we need to know only the spontaneous transition rate A for all the
lines (see below). Here, gi is the statistical weight of level i, e.g. for a rotational
quantum number J one has g = 2J + 1. νik is the centre frequency of the line, with
an energy hνik = Ek − Ei. This apparently inconsistent designation is chosen, as
a negative frequency does not make sense physically. The other quantity Jik is the
mean intensity of the line i → k, integrated over the all frequencies, i.e. over the line
profile (see below). Naturally, we have Jik = Jki.

For the collisional rate coefficients there is a generally valid relation:

giCik = gkCki exp(−
hνik
kTkin

) (7)

which involves the kinetic temperature of the colliding particles which is the mean
kinetic energy of the H2 molecules. In interstellar clouds one has Tkin = 10...100K.

2.3 The Collisional Deexcitation Rate

To compute all collisional rates, we only need to know the deexcitation rate Cki

for i < k. This is either computed from a quantum mechanical treatment of the
collision of a CO and a H2 molecule, or measured experimentally. We shall make a
very crude approximation, which is not too far from the truth: Cki ≈ Nσv. Here N
is the number density of the H2 molecules, σ is the collision cross section, and v the
relative velocity between CO and H2 particles.

The cross section will be of the order of the geometrical cross section: σ ≈
(1Å)2 = 10−20m2 for all transitions.

The relative velocity is about the thermal velocity v =
√

2kTkin/m, where m is
the mass of a H2 molecule.

2.4 Energy Levels and Molecular Data

The differences between the energies of successive levels having rotational quan-
tum numbers J and J + 1 (J = 0, 1, 2, 3, ...) are computed from

EJ+1 − EJ = hνJ,J+1 = 2hB0(J + 1) (8)

using the rotational constant B0 = 5.78975 1010 Hz of the CO molecule. The Einstein
A-value, or spontaneous emission rate for this transition one gets from:

3



AJ+1,J =
(J + 1)4

2J + 3

128

3

π3

hc3ǫ0
µ2B3

0

=
(J + 1)4

2J + 3
1.046 1021 ν3J+1,J µ2 (9)

using the electrical dipole moment µ = 0.112Debye = 0.112 3.333 10−30Cbm of the
CO molecule. All other transitions (e.g. J+2 → J) are forbidden for electrical dipole
radiation, and the A-values for magnetic dipole or electric quadrupole radiation are
smaller by many orders of magnitude. We shall neglect them here.

2.5 Mean Intensities

Assuming an homogeneous and isotropic spherical cloud, the mean intensity at
the centre of the cloud is

Jik = I0ik exp(−τik) + Sik(1− exp(−τik)) (10)

where I0ik is the intensity of the external radiation which we assume to hit the clouds
surface from all directions. This could be equal to the cosmic background radiation
Bν(νik, TBG) with TBG = 3K. τik = κikR is the optical depth of the cloud in the
line i → k, as measured from the surface to the centre. Sik = jik/κik is the source
function of the line.

2.6 Line Absorption and Emission Coefficients

As we had assumed the cloud to be homogeneous, both the absorption (κ) and
emission (j) coefficients are equal throughout the cloud. We compute them at the
centre of the cloud from the number densities of the CO molecule in the relevant
energy levels. We make a further simplification by assuming that all lines have the
same simple box-like shape, the relative width ∆νik/νik = b being the same for all
ik. Then we have for i > k

κik =
hνik

4π∆νik
(nkBki − niBik) (11)

and for the emissivity

jik =
hνik

4π∆νik
niAik (12)

2.7 The Emergent Spectrum
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Since the radiation emerging at the surface of the cloud — for simplicity we
taken only the one line-of-sight through the centre — also has a contribution from
the external radiation field entering at the other side, one gets:

Iemik = I0ik exp(−2τik) + Sik(1− exp(−2τik)) (13)

3. Method of Solution

The system of rate equations (Eq. 1) together with the conservation of particles
(Eq. 2) yields a system of linear equations for the unknown number densities. This
is easily solved by Gauss’ method of elimination. A FORTRAN program can be
provided.

Since the radiative rates depend on the population numbers, the combined sys-
tem of rate equations, optical depths, and mean intensities is a non-linear system.
So starting from N , R, Tkin, b, and ǫCO we cannot compute the population numbers
straight away. We shall use a fix-point iteration, solving in succession the rate equa-
tions, then the intensities, then again the rate equation, and so on, until the level
populations become sufficiently stable.

If we were to do this right away, the iteration would show a very slow convergence
indeed. But since the mean intensities can be written as relatively simple expressions,
one can insert the Jik into the rate equations. Some terms cancel out, leaving the net-
rate equations which yield the same solution as the full equations. Without derivation
we note that one gets these net-rate equations by substituting

Aik → Aik exp(−τik)

BikJik → BikI
0
ik exp(−τik)

everywhere.
Despite this trick, the convergence behaviour for certain values of (N,R) is rather

bad. The radius of convergence becomes rather small. Do make tests with a 2 level
molecule, and study the convergence. A remedy is the application of a dampening
of the solution: If one gets with the old nold

i the solution nnew
i , then we won’t take

for the next step not the new values nnew
i , but ni =

√

nold
i nnew

i for all i. With this
technique, it should be possible to get convergence to 10−3 relative accuracy in the
number densities within a some dozens of iterations.

3.1 Program Structure

(1) Prepare all molecular data
(2) Input and calculation of all physical parameters
(3) Make an initial guess for the {ni}
(4) Compute the intensities, radiative rates, collisional rates. Fill the matrix of

coefficients for the linear equations.
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(5) Solve the system of rate equations.
(6) Checks on the iteration:

on convergence (
∑

i |∆ni/ni| < 10−3 ?)
on maximum number of iterations.

If the accuracy is not good enough and the number of iterations is less than the
maximum permissible number, then goto Step (4).

(7) If convergence accuracy is acceptable: Output of results, etc.
(8) In case one scans through the parameter space, now set the parameters for the

next model. Goto Step (3).

4. Hints, Kinks, and Tests

4.1 General Notes on Program Design

0. Before actually writing the program, do make a flow chart diagram in order
to understand the sequence of what is computed; a diagram of the program
structure and the data structure to find out, how the loops and iterations are
nested, which data from earlier parts you need at each section, which kind of
vectors and arrays you are going to need. This may seem bureaucratic, boring
or even old fashioned, but don’t start typing anything, before you are

absolutely clear about what you plan to do. Otherwise you may really end
up wasting much time in trying to find the logical errors, loopholes, and cul-de-
sacs of your hasty programming. Save yourself the frustration, disappointment,
and anger!

1. General Program Planning: It is a good idea to lay out the program as general
as possible. This makes it easier to include other effects, or to try out other
situations. E.g. keep the number of levels as a parameter which is assigned a
value in the main program, rather than being specified everywhere in the loop
limits. Checking the program for other numbers of levels can thus be done easily
at any time. Or one can try out how many levels are really necessary for a
paricular model and accuracy.

2. Modular Construction: It is also a good idea to break up the program into
mathematically or physically sensible units. This allows a better testing of these
individual modules — and most of the time is spent in tracing an error — a more
flexible use of them for other purposes, and their exchange against improved or
alternative methods, improved data, other physical processes, etc. For example, if
the solution of the system of linear equations is contained in an independent unit,
one simply exchanges this against a more sophisticated method, if need arises,
but without the trouble of having to change the program at a dozen places. For
testing, a simple main program has to be written which supplies the neccessary
input data to this unit.

3. Check Everything by Hand: Often, we understimate our ingenuity to make small
logical mistakes or simple typing errors, which may cause faulty results. The
worst kind of mistakes are those which produce results that look as one would
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expect them to be. Take the trouble of check everything the program does, until
you are sure it does only what you want it to do. In programs about physical
things, basic physics must be obeyed: conservation of particles, energy, etc. Also,
all the simple and limiting cases which we do understand, must be reproduced
accurately.

4. Be Highly Skeptic of anything the program produces.
5. Be Careful with the indices: (I,J) is easily confused with (J,I), so is I and 1. If

one tries to find the origin of some error in the results, one may never notice in
the program’s listing that the two letters were interchanged. Thus, just merely
writing (J,K) is preferable to (I,J).

6. When you are making tests, and later running the program for various situations
and parameters, try to keep a careful written record of what you do, noting input
parameters and results. This will make it easier for you later to compare results
with earlier ones, in case you have to hunt for an error that has crept in yesterday
when you “just changed a few things, almost nothing — but the program doesn’t
work any more”.

4.2 Iterations

Fortunately this program has only one iteration. But nonetheless it is a good
idea to take measures to prevent the iteration to hang up into an eternal loop: There-
fore one should not just check the accuracy, but also specify a maximum number of
iterations, after which there will be a control output for the next (say) 10 iterations,
after which the program is halted. In this way one gets important information about
the iteration’s behaviour if ever something makes the program to take more than
the usual number of steps. This control output should give all relevant information.
Sometimes it is better to have printed out more than really necessary. This pertains
not only to the testing phase of the program, when one still has to hunt for the errors
one has programmed in, but also for the production phase, especially if one wants to
try out a different molecule, and uses the program in situations it has not yet tested
with.

4.3 Excitation Temperature

To judge the behaviour of any transition (i → k, i > k), it is useful to define the
excitation temperature Tex(i, k) of the line:

ni

nk

=
gi
gk

exp(−
Ei −Ek

kTex

) (14)

Note that the excitation temperature may be larger than the kinetic temperature
Tkin. In this case one speaks of suprathermal excitation. If population of the upper
level is even stronger, the excitation temperature increases, and may even become
negative. Then one has an population inversion. Note that the absorption coefficient
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is negative, so is the optical depth. This leads to an amplification of the external
radiation field rather than an attenuation: the cloud has become a maser amplifier.

4.4 Limiting Cases

Here are some limiting situations which are useful for testing whether the whole
program converges to the correct solutions:
(a) Optically thin cloud (small R) and little collisional excitation (small N): Then

the excitation temperatures of all transitions should be equal to the tempera-
ture of the external radiation field, since it completely dominates the rates of
all transitions and is thus responsible for the population of the energy levels.
Tex(i, k) = TBG for all i, k.

(b) Optically thick cloud (large R): When the cloud is opaque in all transitions,
the radiation field at the centre is only due to what the local molecules radiate
themselves. The net radiative rates are all zero, and only the collisions are
responsible for the populations of the levels. As can be ascertained from (7),
then the excitation temperatures of all transitions are equal to the (local) kinetic
temperature. Tex(i, k) = Tkin for all i, k.

(c) Collisionally dominated case (large N): When the density is increased, the col-
lisional rates will eventually surpass all radiative rates. So collisions will set up
the level populations, and the excitation temperatures of all transitions will equal
the kinetic temperature. Tex(i, k) = Tkin for all i, k.

4.5 Computing a Series of Models

Since the population numbers ni for the limiting cases can be easily calculated,
and actually the iteration usually converges there quickly, it is advisable to compute
always a series of models, starting at one of the limiting cases, then changing the
model parameters in small steps, while using the solution of the previous model as
the starting guess for the ni in the next model.

5. Tasks

(1) For which values of the parameters (R, N , Tkin) one gets in the J = 1 → 0 line
a population inversion, i.e. a maser?

(2) Are these masers ”strong”, i.e. how large is the negative optical depth, and is
the amplification factor e−τ much greater than one?

(3) The reason for the population inversion is the fact that whereas collisions can
cause a change between any two energy levels of the CO molecule, radiative pro-
cesses affect only transitions between neighbouring levels. Since the spontaneous
rates A increase for higher energy levels, molecules will tend to get stuck at higher
levels, like in a traffic jam.

(4) If this explanation is true, changing the dependence of the Einstein A-values with
angular quantum number J should could produce bigger or smaller traffic jams,
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thus bigger or smaller population inversions. Can you make a maser with an
amplification factor of say 2 or 10? Try it! Everything is allowed for changes in
the molecular constants, energy levels, and collisional rates.
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SUBROUTINE SOLVE(N, IERR)

C=============================================================

C PROGRAM TO SOLVE THE SYSTEM OF LINEAR EQUATIONS:

C

C SUM( A(I,J) X(J) ) = B(I)

C

C BY GAUSSIAN ELEMINATION

C-------------------------------------------------------------

C INPUT: A( , ), B( ), N

C OUTPUT: B( ), IERR

C

C ERROR CODE: IERR = 0 EVERYTHING O.K.

C = 1 MATRIX HAS ZERO DETERMINANT

C

C NOTE: MATRIX A AND VECTOR B ARE MODIFIED BY THE PROGRAM

C-------------------------------------------------------------

DOUBLE PRECISION A,B,BIGA,SAVE

COMMON /S1/ A(10,10), B(10)

DATA TOL / 1.0D-30 /

C

N1 = N-1

N2 = N*N

IERR = 0

C

C GOING THROUGH ALL COLUMNS...

C

DO 50 J = 1, N

C

C FIND THE EQUATION WITH THE BIGGEST MATRIX ELEMENT

C

BIGA = 0.0D0

DO 10 I = J, N

IF(DABS(BIGA) .LT. DABS(A(I, J))) THEN

BIGA = A(I, J)

IMAX = I

ENDIF

10 CONTINUE

C

C THE MATRIX IS NOT REGULAR!

C

IF(DABS(BIGA) .LE. TOL) THEN

IERR = 1

RETURN

ENDIF
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C

C EXCHANGE THE PRESENT EQUATION WITH THE ONE WITH THE

C BIGGEST ELEMENT, AND DIVIDE ALL COEFFICIENTS BY BIGA

C

DO 20 K = J, N

SAVE = A(IMAX, K)

A(IMAX, K) = A(J, K)

20 A(J, K) = SAVE/BIGA

C ...AND THE VECTOR AS WELL

SAVE = B(IMAX)

B(IMAX) = B(J)

B(J) = SAVE/BIGA

C

C NOW REDUCE ALL EQUATIONS ’BELOW’ THE PRESENT ONE

C

IF(J .LT. N) THEN

J1 = J+1

DO 40 I = J1, N

DO 30 L = J1, N

30 A(I, L) = A(I, L) - (A(J, L)*A(I, J))

40 B(I) = B(I) - (B(J) *A(I, J))

ENDIF

50 CONTINUE

C

C FILL B-VECTOR WITH THE SOLUTION

C

DO 60 I = 2, N

J = N+1-I

J1 = J+1

DO 60 K = J1, N

60 B(J) = B(J) - A(J, K)*B(K)

RETURN

END
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