
Astrophysical Exercises: Self-gravitating N-body Systems

Joachim Köppen Strasbourg 2002

1. Physical Background

The big astronomical objects, such as galaxy clusters, galaxies, and stellar clus-
ters are composed of many smaller objects (galaxies, stars, gas clouds) which interact
gravitationally. This determines the structure and the evolution of these objects.
With modern computers one can easily follow the evolution of such a system of a
large number of particles, and thus study not only galaxies, stellar clusters, and plan-
etary systems, but often one applies these techniques to similar problems, such as the
evolution of the clumps that make up an interstellar gas cloud. Also, one can follow
the collision of interacting particles and study how galaxies collide, or stars or even
subatomic particles. In this exercise, we write a simplified program that computes the
movements of a large number of mass points under the influence of their gravitational
attraction. It is easy to generalize this program to other, additional forces.

2. The Equations

We consider a system of n points of mass mi with positions ri and velocity vi

at time t. Thus the force experienced by the i-th point is the (vector) sum of all the
forces exerted by all the other particles:

Forcei =
n∑

k=1

′

Gmimk

d3

ik

rik (1)

The quote on the summation sign means that we sum over all k 6= i, since the mass
point does not attract itself. G ist the gravitational constant, and rik = ri − rk is the
radius vector from particle i to k, with the distance dik = |rik|.

Each mass point experiences an acceleration ai due to this force:

miai = Forcei (2)

which changes the velocity and the position of the particle:

d2

dt2
ri =

d

dt
vi = ai (3)

1

These are all the equations that rule the movements of each particle, and thus the
evolution of the whole n-body system.

2.1 How to Compute it

The equations (1) to (3) are vector equations, so we write them down for each
component separately. For simplicity, we use cartesian coordinates ri = (xi, yi, zi).
This gives for the x-component of the acceleration of the i-th particle:

ax,i =
n∑

k=1

′

Gmk

d3

ik

(xi − xk) (4)

To do the integration of time, we take a constant time step ∆t, during which we
assume that the acceleration at the ‘old’ time t is constant in each component and for
each particle. Thus the x-component of the velocity of the i-th particle will change
during this time step:

vx,i(t + ∆t) = vx,i(t) + ax,i∆t (5)

Of course, during this time interval, the acceleration changes, as the mass point flies
to another position. So what one really needs for the acceleration is a suitable mean
value for each time step. But in order to compute this, we need to know the new
position, which is what we are just going to compute. So, such a more accurate
method (which is called implicit since it uses information about the new position)
needs an iteration for each time step and it is more complex to program. For the time
being, we shall use the simpler method, but please remember, it is less accurate. It
is called an explicit method, as it uses only information from the old time.

To compute the new position of the mass point at the new time t+∆t we assume
that the velocity is constant. However, the same question as before is raised: which
velocity shall we use? We have two: the old one v(t), or the new one v(t + ∆t), and
we could even take some average value. We recommend to use the new velocities.
The advantage of doing this is the following: One can simply show that the change of
the angular momentum during a time step will be zero, if we use this mixed method
(Please check this by calculating analytically ∆L = r(t + ∆t) Xv(t + ∆t)− r(t) Xv(t)
from Eqs. (5) and (6), and also by observing the components of L in the numerical
calculations). So the new positions are

xi(t + ∆t) = xi(t) + vx,i(t + ∆t)∆t (6)

Since we now use some information from the new time, the method is implicit. These
computations are done for all the points, and after all the new positions are ready,
one repeats the operation for the next time time step.......

2

2.2 Presentation of results

While a direct plot of the instantaneous positions of the point masses, projected
into some plane – say the (x, y)-plane – is helpful to do the first checks with very
simple models, and to get experiences with these systems, the plot quickly becomes
quite filled with a mass of lines.

Often it is helpful to plot just the distance of each point from the centre-of-mass,
whose x-coordinate is:

x0 =
n∑

i=1

mixi/
n∑

i=1

mi (7)

The other coordinates are computed analoguously.

2.3 Checks of the Method

Before one applies one’s program to complex problems, one must check whether it
really does what it was designed to do. The ideal way is to run it for simple problems
that have an analytical solution. For example:

1. compute the orbit around the sun of a planet which has circular velocity: take
two masses, a big one at the centre (x = y = z = 0 and vx = vy = vz = 0)
and a very small one at (x = r, y = z = 0) with initial velocity (vx = vz = 0,
vy = vc). vc is the velocity of a circular orbit with radius r. The planet should not
only make a perfect circle around the sun, and come back to the initial position
(within the orbital period – that you had computed from the basic formulae!),
but also keep staying on the circle for as many cycles as possible. The accuracy
depends on the time step you had chosen.

2. check other initial velocities. They should give elliptic orbits, and if one exceeds
the escape velocity, the planet should never come back!

3. compute the kinetic and potential energies of the whole system, as well as the
modulus or the components of the angular momentum vector. Plot them as a
function of time. Since we do not feed in any energy or angular momentum, they
must stay constant. Do they ???? How well does your program conserve energy
and momentum? Dependence on time step.

3. General Remarks, Hints, and Kinks (I know you won’t read this!!!)

0. Before actually writing the program, do make a flow chart diagram in order
to understand the sequence of what is computed; a diagram of the program
structure and the data structure to find out, how the loops and iterations are
nested, which data from earlier parts you need at each section, which kind of
vectors and arrays you are going to need. This may seem bureaucratic, boring
or even old fashioned, but don’t start typing anything, before you are
absolutely clear about what you plan to do. Otherwise you may really end

3

up wasting much time in trying to find the logical errors, loopholes, and cul-de-
sacs of your hasty programming. Save yourself the frustration, disappointment,
and anger!

1. General Program Planning: It is a good idea to lay out the program as general
as possible. This makes it easier to include other effects, or to try out other
situations. Expanding the program to other force laws, e.g. repelling, as for
the a cluster of protons instaed of stars, or completely different dependence on
distance.

2. Modular Construction: It is also a good idea to break up the program into
mathematically or physically sensible units. This allows a better testing of these
individual modules — and most of the time is spent in tracing an error — a more
flexible use of them for other purposes, and their exchange against improved or
alternative methods, improved data, other physical processes, etc. For example,
if the time integration is contained in a separate unit, one simply exchanges this
against a more sophisticated method, if need arises, but without the trouble of
having to change the program at a dozen places. For testing, a simple main
program has to be written which supplies the necessary input data to this unit.
When adapting the program to a different problem, one merely re-arranges the
modules. The main program may then be just a control program to call the
subprograms in the particular order, and gets and supplies data from and to
each part.

3. Check Everything by Hand: Often, we underestimate our ingenuity to make
small logical mistakes or simple typing errors, which may cause faulty results.
The worst kind of mistakes are those which produce results that look as one
would expect them to be. Do take the trouble of check everything the program
does, until you are sure it does only what you want it to do. In programs about
physical things, basic physics must be obeyed: conservation of particles, energy,
etc. Also, all the simple and limiting cases which we do understand, must be
reproduced accurately.

4. Provide Error Messages and Tracing: Especially during testing, you will print out
everything that is useful to judge on what the program does and what decisions
it makes. For example, have a print out of the energies and angular momentum
of the system. It is recommendable to define one or more variables that can be
used to switch on these print-outs. In this way, one can always check every part
of the program, even after it has been considered finished. If you later want to try
out some modification, and the results are either complete rubbish (because you
made some error) or you just want to understand how the solution behaves, this
option is very useful. Provide written messages if something goes not normal, e.g.
if the automatic stepwidth goes below or above specified values. This become
more important as the program grows in size and complexity.

5. Take Time For Comments: Don’t be lazy with putting comments into the pro-
gram. Not only for the general description what each subprogram does, what
data it needs, and what variables it changes. But also if you change just a line for
a test. Often one forgets after a few days about it, and is quite surprised about

4

the results. Save yourself the panic! Plenty of comments are vital, if you find
some time later that you might use it for something, but you can’t remember
about its inner workings. Don’t wait for them after “the program is finished”. It
never happens, or you won’t have the time.

6. Be highly skeptic of anything the program produces.
7. When you are making tests, and later running the program for various situations

and parameters, try to keep a careful written record of what you do, noting input
parameters and results. This will make it easier for you later to compare results
with earlier ones, in case you have to hunt for an error that has crept in yesterday
when you “just changed a few things, almost nothing — but the program doesn’t
work any more”.

4. Applications

4.1 Dangerous close encounters

When one computes the evolution of a cluster of stars, sometimes two mass points
come quite close to each other, and the accelerations may become very large, hence
the velocities, so that the particle moves within one time step over a long distance, and
the assumption that the acceleration does not change, becomes very poor. Sometimes
even the program will crash, as the numbers become too large for the computer.

One simple practical – but not physically correct – cure is to limit the force by
using a ‘softening’ parameter in the gravitational force:

Force =

n∑
k=1

′

Gmimk

d2

ik + ǫ2
·
rik

dik

(8)

In this way, one can safely do the computations. Check how the value for ǫ changes
the evolution of simple systems, and how it affects the conservation of energy and
angular momentum.

Another approach is to increase the accuracy of the program, by using better
integration methods e.g. Runge-Kutta. You are invited to experiment with this.

An important tool to keep the accuracy during close encounters is to have an
adaptive time step width. Here one would choose a time step so that the all
the velocity components of all the particles do not change by more than a specified
amount, e.g. 1 percent. Try it out!

Though this method will permit to follow through a close encounter quite accu-
rately, it makes the program to slow down enormously every time two particles come

5

rather close. Professional programs use various clever tricks, and they are very effi-
cient. An example is the code of Aarseth which is described in Binney and Tremaine’s
book “Galactic Dynamics”. There is a listing of a simple version of this program in
the back of the book. But there is a bug in the program! Why don’t you get some
idea from this program, and try out this method in some simple way?

4.2 Collisions of asteroids and comets

In recent years, we have become aware of the fact that there are a great number
of asteroids flying about in the Solar System, and that these bodies have sometimes
collided with the Earth and caused great damage, probably including the extinction
of the dinosaurs. What could we do, if we find out that a large asteroid (say 10 km
diametre) will be colliding with us sometime in the future threatening to wipe out
humanity? If one wanted to deflect the asteroid on its orbit, the energy required would
be so huge that even all our nuclear weapon available today might not be sufficient.
Apart from the question how to bring all the explosives to the asteroid...

My students at the International Space University in 2001/02 followed up the
idea that it would be much more efficient if we could find a smaller asteroid which
would come close to the offending asteroid, change its orbit a bit so that it would
collide with the large asteroid, and thus change its orbit. In doing so, one would use
the huge kinetic energy of the orbital motion.

Detailed studies of asteroids have shown that many of them do not consist of solid
rock, but are rather a ‘rubble pile’ (une amas des cailloux, on peut dire). This means
that a collision of two asteroids will not be elastic, like billard balls, but inelastic, and
some part of the kinetic energy will go into ’heating up’ the large asteroid, even cause
it to break up.

We can study this by the n-body code: we shall assume that each asteroid is
modelled as a cloud of particles which are gravitationally bound, so that they always
remain together within a certain size. This is a simplification, because in a real
asteroid there are also forces of cohesion which make the dust particles and rocks
stick together.

Thus the first step is to make a stable, gravitationally bound cluster of particles
(or stars or galaxies ...). This is the same problem which one deals in stellar dy-
namics and cinematics of galaxies! The book “Galactic Dynamics” by Binney and
Tremaine (available in the DEA library) has a whole chapter devoted to autogravi-
tating configurations of matter. We know that the density distribution of a gas with
a velocity dispersion σ in a (spherically symmetric) potential Φ(r) is given by

ρ(r) = ρ0 exp(−
Φ(r)

σ2
)

6

with a central density ρ0 which is determined by the total mass

Mtotal =

∫
∞

0

4πr2ρ(r)dr

If the potential is due to the matter itself,

Φ(r) = const. − G

∫ r

0

4πr2ρ(r)dr

In principle, we should solve these equations consistently....
But let us use our code to find the equilibrium configuration by trial and error:

The density will have a maximum at the centre, so let us simply assume a Gaussian
form

ρ(r) = ρ0 exp(−(r/R)2)

with a characteristic radius R which would be of the same order of magnitude as
the asteroid’s true radius. We shall create particle coordinates so that the particles’
space density is equal to this density: With a random number generator (Numerical
Recipes) we draw three numbers (distributed uniformly between 0 and 1); the first
one is transformed into the interval 0 ... 2π for the azimutal angleφ, the second one is
transformed (Numerical Recipes: transformation method to convert a uniformly dis-
tributed random number into one which is distributed according to a given function)
into angle θ which should be distributed like cos(θ) – this ensures that we create ran-
dom orientations uniformly distributed over the entire sphere. The third number is
transformed into a random r which must be distributed like r2ρ(r), since we demand
spherical symmetry.

We also need to assign an initial velocity vector: again, we draw three random
numbers, again we create random angles φv and θv in the same way as before, but
for the modulus v of the velocity vector we shall assume that it is distributed like a
Maxwell-Boltzmann distribution: v2 exp(−(v/σ)2/2), with a free parameter σ.

We select a suitable softening parameter: ǫ should certainly be less than one-
tenth of the asteroid’s radius in order to see the details of the collision, but not too
small because then the timestep must be made too small.

Then we start the simulation and observe whether the particles stream towards
the centre, i.e. whether the initial configuration collapses. This means that the ve-
locity dispersion σ had been too small to balance the gravitational attraction. If on
the other hand, the particles move away from each other, and the asteroid explodes
or evaporates, the initital kinetic energy was too large. A few tries may give a rea-
sonably stable configuration. You might observe some oscillations of the entire cloud
of particles. There will probably be a simple relationship between R, σ, and the mass
of the asteroid.

After you’ve found how to make a stable rubble pile, take a large one (10 km
diametre, mean density 3 g/cm3). It is convenient to observe everything from the
system of coordinates in which the big asteroid is at rest – we shall neglect its orbital
motion about the Sun and also the gravitational fields of the Sun and the planets.

7

The smaller ‘striker’ asteroid (say 1 km diametre) comes in from some distance (not
too far, otherwise we waste computing time) with some initial speed and direction.
And then let them collide, and let’s see what happens: under which conditions does
the big asteroid remain intact? if it remains intact, how much is its speed changed?
what is the fate of the smaller asteroid – does it merge with the big one? ... If one
marks the particles belonging to the two bodies with different colours, one can see
how the matter of each body is distributed in the resulting configuration.

The principal parametres are the mass ratio M2/M1, the initial speed difference
∆v = v2 − v1, and the impact parameter that is the distance of their centres of mass
at closest approach, if the asteroids were single point masses.

Suggestion: For the case of central collision – zero impact parameter – application
of the conservations of momentum and energy before and after the collision (your first
year in physics!) gives you simple formulae for the change of velocity of the big asteroid
and all other quantities of the problem, both for the perfectly elastic and inelastic
collisions.

4.3 Perturbations of planetary orbits

Consider the following situation: a planet is on a circular orbit around a massive
star. Put another planet at some other distance from the star, also on a circular orbit.
If the second planets’ mass is sufficiently large (how large??) the first planet will no
longer remain on a circular orbit. As one can see from a plot of the distances from the
centre-of-mass as a function of time, it changes its distance to the sun periodically:
it has an elliptic orbit. If the mass of the second planet become comparable to the
stellar mass, the star also orbits the centre-of-mass! Investigate what can happen to
the orbit of the first planet, and find out under which conditions (ratio of the orbital
axes) interesting effects occur.

Now put a planet on a circular orbit around the star. Also place a number of
very small mass points on circular orbits on various distances from the star, both
between the planet and the star and further away. Make the masses very small indeed
– or even put them to zero, so that they do not interact with each other. As the planet
and the ‘asteroids’ circle the star, the planet will cause changes to the orbits of the
test particles. Some of them even will be ejected from the planet system. This is
what has happened to Saturn’s rings and to the asteroids, which are influenced by
Jupiter. How close to a planet can a stable orbit for an asteroid exist?

4.4 Stellar clusters: collapse and evaporation

8

For the following task, it is sufficient to put in the softening of the force. We
start with a spherical cloud of randomly distributed stars, with some random initial
velocities. Note: you find a random number generator program in the “Numerical
Recipes” by Press et al. Let this stellar cluster evolve. Try out different numbers of
stars, different initial conditions (especially the velocities, which determine the initail
kinetic energy), time step widths, and softening parameters. What general behaviour
can you see?

You will have noticed that there are a number of stars which escape from the clus-
ter. Hénon (1969, Astron.Astrophys. 2, 151) has computed the rate of stars escaping
from the system. With our program we can measure the escape rate

4.5 Collision with a double star

First, make a double star, with two stars of equal mass, orbiting each other in
circular orbits, say in the (x, y)-plane. Next, place another star – same mass – at
a large distance from the double star, either in the orbital plane, or perpendicular
to it. Let this star have some initial velocity, and positioned in a way that it flies
towards the binary, and if there were no interaction, it would hit the double star at
some distance from the centre. See what happens!

Let us first consider if the ‘bullet’ star comes perpendicular to the orbital plane:
In this collision there are three parameters: the initial velocity of the star, where it
hits the double star system – the impact parameter, i.e. the distance from the centre,
if it would fly in a straight line – and the phase of the double star at the time of the
collision – which we can control simply by placing the bullet nearer or farther. Play
with these parameters, and observe what happens to the binary star. Under which
conditions the double star remains unperturbed, when does the orbit change, when
does the star pair break up?

Next, what happens when the bullet flies in the orbital plane? And: what hap-
pens when the three masses are not equal?

9

