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1. Physical Background

Although the gravity is the weakest of the four fundamental forces, it rules the
large scale structure of the Universe, the motions of stars and planets. Newton formu-
lated his universal inverse-square law for the attracting force between two masses, and
with his precription we have travelled to the Moon and to other planets. However,
if we want to explain the orbits of stars in a spiral galaxy with Newtonian gravity,
we run into a problem, because the observed mass inside the orbit does not suffice to
keep the stars on their orbits. One way to account for this well-established fact is to
postulate the existence of Dark Matter, some kind of matter that has so far escaped
all observational efforts, except for its gravitational influence on normal matter. This
model has been most successful to explanation many observational facts in the Uni-
verse, but we still have no idea what this Dark Matter is, and have no direct and
firm evidence for its existence. Another explanation could be that Newton’s laws do
not hold for the large distances in space, so that the laws derived from experiments
in Earth and its vicinity might need modifications. One of the consequences of this
approach, MOND for MOdified Newtonian Dynamics, is that orbits no longer follow
exactly Kepler’s laws, and show a precession.

If one considers the motion of two bodies only, such as that of a planet around
its parent star, the exact solution is well known: the trajectory is a conic section, and
follows the three laws formulated by Kepler. But this is true only, if the gravitational
force depends precisely on square of the distance. As Newton himself already realised,
any deviation from the exponent 2 would cause the orbits to precess, that is, the major
axis would rotate slowly around the centre of gravity of the system. This means that
observations of the precession rate of orbits would allow to measure deviations from
Newtonian gravity. However, there are also other efects that cause orbital precession.
Apart from relativistic effects (the precession of Mercury’s orbit is one of the proofs for
the validity of Special Relativity) there are less exotic causes: deviations of the mass
distribution in the central body from spehrical symmetry (oblateness of the Sun; the
Earth’s shape and its uneven mass distribution have their effects on satellite orbits),
perturbations by other bodys outside but sufficiently close to the system, tidal forces
from the other stars in the galaxy which the system is part of.

With our computers we can easily and accurately compute the orbits, given
any prescribed force law. In this exercise, we shall write a simplified program that
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simulates the flight of a planet (or a star) around a star under the influence of gravity,
but also allows to determine the precession rate. Since the numerical solution of the
equations will cause some numerical precession of the results, we have to ensure by
choosing an appropriate method and calculational paremeters that this error remains
sufficiently small. With this constraint, we shall be able to determine the precession
rates for various orbital configurations, different deviations from Newtonian gravity,
as well as the MOND formulation. As it is practically impossible for us human to
follow a star in its orbit in a galaxy, we cannot test MOND directly. With our
simulations, we can explore whether it could be possible to test MOND by high-
accuracy observations of binary stars or perhaps tracking interplanetary probes. Let’s
find out whcih conditions and what accuracy would be required!

2. The Equations

Let us consider the orbit of a planet about a star. Since the star is much more
massive than the planet, we may neglect that the planet also acts on the star, and
hence both bodies perform orbits about their centre of mass. It makes life easier, if
we neglect this, but we do not lose any significant aspect: It can be shown that the
treatment of the proper two-body problem can be separated into the motion of the
centre of mass and the relative motion of the two bodies...

The star of mass M will thus be placed in the origin of the coordinate system
and it will be at rest. At at given instant of time t, the planet of mass m shall be at
position r = (x, y, z) and moving with velocity v = (vx, vy, vz). The force experienced
by the planet is (written component-wise, marked by the indices):

Fi = −GMm

r2
ri
r

(1)

where r = |r| =
√

x2 + y2 + z2 and G is the gravitational constant. The first term is
Newton’s law of gravity for the total force, the second term is just the projection of
the force onto the direction to the star.

Here, it is useful to make another simplifying assumption: with any central force
law, the motion of the planet is restricted to a plane. Thus, we may solve the equations
in two dimensions only, by placing the orbital plane in the (x, y) plane. This means
that the computational effort is reduced by 30 percent, and the simulation will run
faster!

The planet experiences an acceleration ai due to this force:

ai = Fi/m = −GM

r2
ri
r

(2)
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which changes the velocity and the position of the particle:

d2

dt2
r =

d

dt
v = a (3)

These are all the equations we need to solve.

2.1 Normalized units

The first thing we notice in the above equations is that the planet’s mass m has
completely vanished from the final expressions. Also, that GM always appear as this
product. This allows us to formulate the problem in normalized or adapted units:
if we used m, kg, and s as units, we would get numerically large numbers for the
astronomical dimension, masses, and times. This may cause numerical difficulties ...
Instead it is better to have the numerical values of all the variables close to unity. If we
chose such a unit of mass that GM = 1 and as unit of length that the initial distance
planet-star becomes r = 1, and as unit of time that the speed for a circular orbit at
radius 1 also becomes vc(r = 1) = 1, we have a much better numerical situation. As
the circumference of a circle of unity radius is 2π, this will be the value of the circular
period.

There is another benefit: the general problem of a small body around a very
massive one is reduced to this simple view. Irrespective of the real masses and the
real dimensions, we get a circular orbit, if the small body has circular speed as its
initial speed. This applies to any system: the circular speed for Earth satellites at
low alitude is about 7.9 km/s, the circular speed around the Sun is 30 km/s at the
place of the Earth, and about 5.5 km/s at Neptune’s distance, and about 200 km/s
for the Sun in the Milky Way Galaxy.

2.2 How to Compute it

At a given time t we compute the force, and thus the acceleration. To do the
integration of time, we take a constant time step ∆t, during which we assume that the
acceleration at the ‘old’ time t is constant in each component. Thus the x-component
of the velocity of the planet will change during this time step:

vx(t+∆t) = vx(t) + ax∆t (5)

Of course, during this time interval, the acceleration changes, as the planet flies to
another position. What one really needs for the acceleration is a suitable mean value
for each time step. But in order to compute this, we need to know the new position,
.... which is what we are just going to compute. So, such a more accurate method
(which is called implicit since it uses information about the new position) needs an
iteration for each time step and it is more complex to program. For the time being,
we shall use the simpler method, but please remember, it is less accurate. It is called
an explicit method, as it uses only information from the old time.
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To compute the planet’s new position at the new time t+∆t we assume that the
velocity is constant. However, the same question as before is raised: which velocity
shall we use? We have two: the old one v(t), or the new one v(t + ∆t), and we
could even take some average value. We recommend to use the new velocities. The
advantage of doing this is the following: One can simply show that the change of
the angular momentum during a time step will be zero, if we use this mixed method
(Please check this by calculating analytically ∆L = r(t+∆t) Xv(t+∆t)− r(t) Xv(t)
from Eqs. (5) and (6), and also by observing the components of L in the numerical
calculations). So the new x-position is

x(t+∆t) = x(t) + vx(t+∆t)∆t (6)

Since we now use some information from the new time, the method is implicit. These
computations are done for all the points, and after all the new positions are ready,
one repeats the operation for the next time time step.......

2.3 Checks of the Method

Before one applies one’s program to complex problems, one must check whether it
really does what it was designed to do. The ideal way is to run it for simple problems
that have an analytical solution. For example:
1. compute the orbit around the sun of a planet which has circular velocity: vc is

the velocity of a circular orbit with radius r. The planet should not only make a
perfect circle around the sun, and come back to the initial position (within the
orbital period – that you had computed from the basic formulae!), but also keep
staying on the circle for as many cycles as possible. The accuracy depends on
the time step you had chosen.

2. check other initial velocities, and recover Kepler’s laws. They should give elliptic
orbits, and if one exceeds the escape velocity, the planet should never come back!

3. compute the kinetic and potential energies of the whole system, as well as the
modulus or the components of the angular momentum vector. Plot them as a
function of time. Since we do not feed in any energy or angular momentum, they
must stay constant. Do they ???? How well does your program conserve energy
and momentum? Dependence on time step.
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3. Applications

3.1 How to determine the precession

The usual way to characterise a precessing orbit is to specify the angle (with
respect to the central body at the focal point) between the apsides, that is the pe-
riastron and apastron, the closest and farthest positions of the planet from the star.
For a Kepler ellipse, this angle is exactly 180o or π.

Rather than testing for the minimum and maximum of the distance r, it is much
better to test for the change of the sign of the radial speed. The radial speed is the
projection of the velocity vector on the direction to the star: The angle ϕ between
this direction and the x-axis is

ϕ = arctan(x/y) (7)

Since the tangent function has a period of only π there is an ambiguity for the other
semicircle. Thus, some programming languages offer also a function atan2(x, y).
Then the radial component of the velocity is

vrad = vx sin(ϕ) + vy cos(ϕ) (8)

To find the apsidal points, we simply check whether the sign of vrad has changed
between the last and the current time instant. When that happens, we know that it
lies somewhere in the past time step. We then determine the position more accurately
by linear interpolation between the data, for instance

ϕ = ϕ(t)− vrad(t)
ϕ(t−∆t)− ϕ(t)

vrad(t−∆t)− vrad(t)
(9)

For higher accuracy you can use a quadratic interpolation.
Having obtained the angles ϕ for successive apastron and periastron, we compute

the apsidal angle as the difference.
Since we are more interested in the deviation from Keplerian orbits - which have

the apsidal angle π - it makes more sense to compute its difference with π! Thus,
we get a quantity that increases with faster precession. It is the precession angle per
orbit.

3.2 Numerical Precession

The best way to observe precession is to study elliptical orbits. If you do this,
and if you had chosen a timestep not too small - because you curious to have results
quickly - you will probably notice that the ellipse precesses visibly.
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– what is the precession angle per orbit?
– change the timestep ∆t. How does the precession angle per orbit change with

timestep?
– How does this change with the eccentricity of the orbit?
– How does the precession relate to the error in the total energy?

You may convince yourself that this precession is not a fault of your programming:
Our method conserves the angular momentum with machine accuracy. It does not
conserve the total energy with the same precision, but with smaller timesteps, the
simulation becomes more accurate, the energy error and also the precession rate
decrease. It is simply the finite accuracy of our numerical method.

One might chose a sufficiently small time step, but as this increases the compu-
tation time, this might not be a convenient option.

Another approach is to use a more accurate numerical method. For instance, we
can modify our simple method by using a halfstep in time:
1. compute forces
2. get new velocity for half time step vx = vx + ax∆t/2
3. get new positions at full step x = x+ vx∆t
4. compute forces at new position
5. get new velocity for next half time step vx = vx + ax∆t/2

Since on an elliptical orbit the speed is maximal close to the star, we could add some
automatic adaptation of the time step, so that the change in position and/or in speed
during one step remains below a certain tolerance ǫ:

ǫ > ∆|v| ≈ |a|∆t

gives

∆t ≈ ǫ

|a|
Or we could demand that the relative change ∆v/|v| in speed should remain below
the tolerance... Similar arguments could be applied to the change in position ... There
is not ”best” solution

Lastly, we could use a different and more sophisticated method: the well-known
4th order Runge-Kutta method seems better, but it does not conserve angular mo-
mentum with machine accuracy ... However, there is a symplectic version of RK4.
Written here for the x coordinate only:
– compute acceleration(x)
– sv1 = b1 ax∆t; x1 = c1 sv1 ∆t
– compute acceleration(x1)
– sv2 = sv1 + b2 ax∆t; x2 = x1 + c2 sv2 ∆t
– compute acceleration(x2)
– sv3 = sv2 + b3 ax∆t; x3 = x2 + c3 sv3 ∆t
– compute acceleration(x3)
– sv4 = sv3 + b4 ax∆t; x4 = x3 + c4 sv4 ∆t
– result: vx = sv4; x = x4
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With these coefficients

c1 = c4 = (2.0 + 21/3 + 2−1/3)/6.0

c2 = c3 = (2.0− 21/3 − 2−1/3)/6.0

b1 = b4 = 0;

b2 = 1.0/(2.0− 21/3)

b3 = 1.0/(1.0− 22/3)

In the applet http://astro.u-strasbg.fr/˜koppen/MOND2/binary.html the meth-
ods Leap Frog, Leap Frog 2nd order, Symplectic 4, as well as some others are imple-
mented.

3.3 Precession by other force exponents

Once you know how you can obtain results with a small error (10−7 for the preces-
sion per orbit are possible) you can measure the precession rates for force laws which
have an exponent somewhat different from the value −2 of Newton’s gravitation.

Newton himself derived an expression (cf. Valluri et al. MNRAS 358, 1273
(2005)): For a centripetal force of magnitude ∝ rn−3 the apsidal angle is θ = π/

√
n

which is valid for nearly circular orbits only.
Try out with weakly elliptical orbits but also with more eccentric orbits. How

does the precession rate per orbit depend on the exponent, and how does it depend
on orbital eccentricty?

3.4 Precession by MOND

In its simplest form - and this will be sufficient for our exercise - the gravita-
tional acceleration a computed by MOND is related to the newtonian gravitational
acceleration gN by this formula

aN = a ∗ µ(|a|/a0) (10)

where µ is an interpolating function

µ(x) =
{

1 for x ≫ 1
x for x < 1

(11)
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and a0 a value for the threshold acceleration, below which MOND modifies the grav-
itational acceleration. A simple continuously differentiable interpolating function is

µ(x) =
x

1 + x
(12)

With this choice, you can solve eqn.(10) for a, the desired acceleration! (you’ll get
a quadratic equation, of which only one solution is physically sensible ... as a0 → 0
should converge against the newtonian case!)

From this we get the result that for accelerations much larger than a0 we recover
the standard Newtonian acceleration a = aN , but for acceleration much smaller than
a0 (the “deep MOND regime”) we get a =

√
a0 ∗ aN .

This means that |a| = GM/r2 changes to |a| =
√
a0GM/r in the deep MOND

regime, so that the gravitational attraction drops more slowly with distance ... this
is the feature that permits MOND to explain the flat rotation curves of galactic disks
in an easy way!

In our scaled system of units the value of a0 determines in which regime a planet
moves:
1. a0 = 0 is the purely Newtonian situation
2. a0 ≫ 1 is the purely MOND situation
4. In absolute units one finds that about a0 = 10−9 m/s2 reproduces the galactic

rotation curves.
5. Note that in our normalized units, an acceleration of 1 is the acceleration of a

planet on a circular orbit with radius 1.
Run simulations similar to the ones done earlier with Newtonian gravity, but increase
the value of a0. You will find that the greater the value of a0 the greater is the
precession.

Given a certain value of a0 and a given orbital eccentricity, you will find a pre-
cession rate. If we interpret this as a deviation from the inverse square law, what
exponent would it correspond? The precession depends on eccentricity in a certain
way ... does it so in the same way in MOND as when playing with the force exponent
(see above)? In other words: could one misinterpret MOND as deviations of the force
exponent from the Newtonian value of −2?

Imagine you could measure the precession of a binary star with some certain ac-
curacy. Even if you specify an accuracy that is not possible with present instruments,
let us find out what would be the value of a0 which produces precessions larger than
your assumed detection threshold. We can explore several routes:
1. Which kind of binary systems (period, eccentricity) would be suitable for the

detection of precession from values of a0 as low as the ones needed for galactic
rotation curves!

2. Which accuracy (in the precession rate) would be needed to detect MOND?
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3.5 Precession by external tidal field

Stars are not alone in the galaxy. Therefore a binary system cannot be considered
as a completely isolated system. There is the gravitational force from all components
of a galaxy that has an influence on the movement of the stars. This general field of
force can be represented by a function smoothly and gently varying with position

Fext = F0 + F1x+ F2x
2... (13)

For the sake of simplicity, let us consider a variation in tye x coordinate only. The
first term has no effect on the shape of the orbit, as a constant force will push both
stars and the centre of mass. The second term is the tidal force which is zero at x = 0
the position of the massive star. It pulls the planet (i.e. the small star) away from the
massive star, everytime the planet is on the ’left’ or the ’right’ side. A deformation
and a precession of the orbit are the consequences.

If you add this term to your simulations, you will be able to determine the
precession per orbit as a function of the force gradient F1, as you increase it starting
from the isolated case F1 = 0. If you think in terms of detecting MOND or deviations
from Newtonian gravity law by observing precessing binary stars, could the tidal
forces due to the galactic gravity field perhaps render such an attempt impossible?

4. General Remarks, Hints, and Kinks (I know you won’t read this!!!)

0. Before actually writing the program, do make a flow chart diagram in order
to understand the sequence of what is computed; a diagram of the program
structure and the data structure to find out, how the loops and iterations are
nested, which data from earlier parts you need at each section, which kind of
vectors and arrays you are going to need. This may seem bureaucratic, boring
or even old fashioned, but don’t start typing anything, before you are
absolutely clear about what you plan to do. Otherwise you may really
end up wasting much time in trying to find the logical errors, loopholes, and
cul-de-sacs of your hasty programming.

1. General Program Planning: It is a good idea to lay out the program as general
as possible. This makes it easier to include other effects, or to try out other
situations.

2. Modular Construction: It is also a good idea to break up the program into
mathematically or physically sensible units. This allows a better testing of these
individual modules — and most of the time is spent in tracing an error — a more
flexible use of them for other purposes, and their exchange against improved or
alternative methods, improved data, other physical processes, etc. For example,
if the time integration is contained in a separate unit, one simply exchanges this
against a more sophisticated method, if need arises, but without the trouble of
having to change the program at a dozen places. For testing, a simple main

9



program has to be written which supplies the necessary input data to this unit.
When adapting the program to a different problem, one merely re-arranges the
modules. The main program may then be just a control program to call the
subprograms in the particular order, and gets and supplies data from and to
each part.

3. Check Everything by Hand: Often, we underestimate our ingenuity to make
small logical mistakes or simple typing errors, which may cause faulty results.
The worst kind of mistakes are those which produce results that look as one
would expect them to be. Do take the trouble of check everything the program
does, until you are sure it does only what you want it to do. In programs about
physical things, basic physics must be obeyed: conservation of particles, energy,
etc. Also, all the simple and limiting cases which we do understand, must be
reproduced accurately.

4. Provide Error Messages and Tracing: Especially during testing, you will print out
everything that is useful to judge on what the program does and what decisions
it makes. For example, have a print out of the energies and angular momentum
of the system. If you have a few variables that switch on these print-outs. Then,
you can always check every part of the program, even after it has been considered
finished. If later you want to try out some modification, and the results are either
complete rubbish (because you made some error) or you just want to understand
how the solution behaves, this option is very useful. Provide warning messages
if something goes abnormal, e.g. if the automatic stepwidth goes below or above
specified values. This becomes more important as the program grows in size and
complexity.

5. Take Time For Comments: Don’t be lazy with putting comments into the pro-
gram. Not only for the general description what each subprogram does, what
data it needs, and what variables it changes. But also if you change just a line for
a test. Often one forgets after a few days about it, and is quite surprised about
the results. Save yourself the panic! Plenty of comments are vital, if you find
some time later that you might use it for something, but you can’t remember
about its inner workings. Don’t wait for them after “the program is finished”. It
never happens, or you won’t have the time.

6. Be highly skeptic of anything the program produces, especially when results look
reasonable ... when you get weird results, negative temperatures, NaN, orbital
catastropies, then you should be happy: only then you really know that there in
an error in the program!

7. When you make tests, and later run the program for various situations and
parameters, try to keep a careful written record of what you do, noting input
parameters and results. This will make it easier for you later to compare results
with earlier ones, in case you have to hunt for an error that has crept in yesterday
when you “just changed a few things, almost nothing — but the program doesn’t
work any more”.
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