
Astrophysical Exercises: The Stability of Saturn’s Rings

Joachim Köppen Strasbourg 2009

1. Physical Background

In 1856, James Clerk Maxwell submitted an prize-winning Essay on the Stability
of Saturn’s Rings. In this very detailed study he first proved that that the rings could
not be of a solid material, which lead him to propose that they consist of a great
number of small particles which orbit that planet. He investigated very carefully
under which conditions such a configuration would be stable and would thus make
the rings a feature that would last long and would not show any change.

His stability analysis showed that if one has a ring of n satellites, evenly spaced
around the planet, and orbiting it in the same circular orbit, this system would be
stable against perturbations of the relative positions if

MSaturn/MRing > 0.435n2

where MRing is the total mass in the Ring, formed by n satellites of equal mass.
His study was done analytically, and long before we were able to solve this grav-

itational n-body problem in full detail with electronic computers ... but our compu-
tations should confirm his result. And they will!

With modern computers one can easily follow the evolution of system of a large
number of particles which move around each other due to the graviational attraction,
and thus this approach has become an enormously useful resreach tool. It allows to
study not only planets and moons, planetary systems, stellar clusters, and clusters
of galaxies, but often one applies these techniques to similar problems, such as the
evolution of the clumps that make up an interstellar gas cloud. Also, one can follow
the collision of interacting particles and study how galaxies collide, or stars or even
subatomic particles. In this exercise, we write a simplified program that computes the
movements of a large number of mass points under the influence of their gravitational
attraction. So we can simulate the fate of a ring of satellites to check Maxwell’s
criterion, but also to generalize the model to unequal satellite masses, multiple rings
etc...

1

2. The Equations

We consider a system of n points of mass mi with positions ri and velocity vi

at time t. Thus the force experienced by the i-th point is the (vector) sum of all the
forces exerted by all the other particles:

Forcei =
n∑

k=1

′

Gmimk

d3
ik

rik (1)

The quote on the summation sign means that we sum over all k 6= i, since the mass
point does not attract itself. G ist the gravitational constant, and rik = ri − rk is the
radius vector from particle i to k, with the distance dik = |rik|.

Each mass point experiences an acceleration ai due to this force:

miai = Forcei (2)

which changes the velocity and the position of the particle:

d2

dt2
ri =

d

dt
vi = ai (3)

These are all the equations that rule the movements of each particle, and thus the
evolution of the whole n-body system.

2.1 How to Compute it

The equations (1) to (3) are vector equations, so we write them down for each
component separately. For simplicity, we use cartesian coordinates ri = (xi, yi, zi).
This gives for the x-component of the acceleration of the i-th particle:

ax,i =

n∑

k=1

′

Gmk

d3
ik

(xi − xk) (4)

To do the integration of time, we take a constant time step ∆t, during which we
assume that the acceleration at the ‘old’ time t is constant in each component and for
each particle. Thus the x-component of the velocity of the i-th particle will change
during this time step:

vx,i(t + ∆t) = vx,i(t) + ax,i∆t (5)

Of course, during this time interval, the acceleration changes, as the mass point flies
to another position. So what one really needs for the acceleration is a suitable mean
value for each time step. But in order to compute this, we need to know the new
position, which is what we are just going to compute. So, such a more accurate
method (which is called implicit since it uses information about the new position)
needs an iteration for each time step and it is more complex to program. For the time

2

being, we shall use the simpler method, but please remember, it is less accurate. It
is called an explicit method, as it uses only information from the old time.

To compute the new position of the mass point at the new time t+∆t we assume
that the velocity is constant. However, the same question as before is raised: which
velocity shall we use? We have two: the old one v(t), or the new one v(t + ∆t), and
we could even take some average value. We recommend to use the new velocities.
The advantage of doing this is the following: One can simply show that the change of
the angular momentum during a time step will be zero, if we use this mixed method
(Please check this by calculating analytically ∆L = r(t + ∆t) Xv(t + ∆t)− r(t) Xv(t)
from Eqs. (5) and (6), and also by observing the components of L in the numerical
calculations). So the new positions are

xi(t + ∆t) = xi(t) + vx,i(t + ∆t)∆t (6)

Since we now use some information from the new time, the method is implicit. These
computations are done for all the points, and after all the new positions are ready,
one repeats the operation for the next time time step.......

2.2 Presentation of results

For our study of Maxwell’s criterion, we can limit our computations to the orbital
plane of the ring, in, say, the (x, y)-plane. This will reduce the number of computations
necessary during ech time step, and thus will speed up the program, and will allow
us to use a larger number of particles instead!

While a direct plot of the instantaneous positions of the point masses, projected
into some plane – say the (x, y)-plane – is helpful to do the first checks with very
simple models, and to get experiences with these systems, the plot quickly becomes
quite filled with a mass of lines.

Often it is helpful to plot just the distance of each point from the centre-of-mass,
whose x-coordinate is:

x0 =
n∑

i=1

mixi/
n∑

i=1

mi (7)

The other coordinates are computed analoguously.

2.3 Checks of the Method

Before one applies one’s program to complex problems, one must check whether it
really does what it was designed to do. The ideal way is to run it for simple problems
that have an analytical solution. For example:

1. compute the orbit around the sun of a planet which has circular velocity: take
two masses, a big one at the centre (x = y = z = 0 and vx = vy = vz = 0)
and a very small one at (x = r, y = z = 0) with initial velocity (vx = vz = 0,
vy = vc). vc is the velocity of a circular orbit with radius r. The planet should not
only make a perfect circle around the sun, and come back to the initial position

3

(within the orbital period – that you had computed from the basic formulae!),
but also keep staying on the circle for as many cycles as possible. The accuracy
depends on the time step you had chosen.

2. check other initial velocities. They should give elliptic orbits, and if one exceeds
the escape velocity, the planet should never come back!

3. compute the kinetic and potential energies of the whole system, as well as the
modulus or the components of the angular momentum vector. Plot them as a
function of time. Since we do not feed in any energy or angular momentum, they
must stay constant. Do they ???? How well does your program conserve energy
and momentum? Dependence on time step.

3. General Remarks, Hints, and Kinks (I know you won’t read this!!!)

0. Before actually writing the program, read the whole dossier and try to get the
global idea. It may be very usefull to make a flow chart diagram in order to
understand the sequence of what is to be computed; a diagram of the program
structure and the data structure to find out, how the loops and iterations are
nested, which data from earlier parts you need at each section, which kind of
vectors and arrays you are going to need. This may seem bureaucratic, boring
or even old fashioned, but don’t start typing anything, before you are
absolutely clear about what you plan to do. Otherwise you may really end
up wasting much time in trying to find the logical errors, loopholes, and cul-de-
sacs of your hasty programming. Save yourself the frustration, disappointment,
and anger!

1. General Program Planning: It is a good idea to lay out the program as general
as possible. This makes it easier to include other effects, or to try out other
situations. Expanding the program to other force laws, e.g. repelling, as for
the a cluster of protons instaed of stars, or completely different dependence on
distance.

2. Modular Construction: It is also a good idea to break up the program into
mathematically or physically sensible units. This allows a better testing of these
individual modules — and most of the time is spent in tracing an error — a more
flexible use of them for other purposes, and their exchange against improved or
alternative methods, improved data, other physical processes, etc. For example,
if the time integration is contained in a separate unit, one simply exchanges this
against a more sophisticated method, if need arises, but without the trouble of
having to change the program at a dozen places. For testing, a simple main
program has to be written which supplies the necessary input data to this unit.
When adapting the program to a different problem, one merely re-arranges the
modules. The main program may then be just a control program to call the
subprograms in the particular order, and gets and supplies data from and to
each part.

3. Check Everything by Hand: Often, we underestimate our ingenuity to make
small logical mistakes or simple typing errors, which may cause faulty results.

4

The worst kind of mistakes are those which produce results that look as one
would expect them to be. Do take the trouble of check everything the program
does, until you are sure it does only what you want it to do. In programs about
physical things, basic physics must be obeyed: conservation of particles, energy,
etc. Also, all the simple and limiting cases which we do understand, must be
reproduced accurately.

4. Provide Error Messages and Tracing: Especially during testing, you will print out
everything that is useful to judge on what the program does and what decisions
it makes. For example, have a print out of the energies and angular momentum
of the system. It is recommendable to define one or more variables that can be
used to switch on these print-outs. In this way, one can always check every part
of the program, even after it has been considered finished. If you later want to try
out some modification, and the results are either complete rubbish (because you
made some error) or you just want to understand how the solution behaves, this
option is very useful. Provide written messages if something goes not normal, e.g.
if the automatic stepwidth goes below or above specified values. This become
more important as the program grows in size and complexity.

5. Take Time For Comments: Don’t be lazy with putting comments into the pro-
gram. Not only for the general description what each subprogram does, what
data it needs, and what variables it changes. But also if you change just a line for
a test. Often one forgets after a few days about it, and is quite surprised about
the results. Save yourself the panic! Plenty of comments are vital, if you find
some time later that you might use it for something, but you can’t remember
about its inner workings. Don’t wait for them after “the program is finished”. It
never happens, or you won’t have the time.

6. Be highly skeptic of anything the program produces.
7. When you are making tests, and later running the program for various situations

and parameters, try to keep a careful written record of what you do, noting input
parameters and results. This will make it easier for you later to compare results
with earlier ones, in case you have to hunt for an error that has crept in yesterday
when you “just changed a few things, almost nothing — but the program doesn’t
work any more”.

4. Suggestions
a after verification that the program works as it should and that the orbit of a single

satellite around a massive planet remains stable for as many orbits as you can
do, build up a system of satellites. Maxwell investigated 36 moons of equal mass,
equally spaced in a circle and moving with circular speed. For the beginning,
it may be better to start with a smaller number ... in any case: for a given
mass ratio of Saturn and its Ring, what happens if you increase the number
of particles? Maxwell’s criterion tells us that the ring will become unstable,
if the number of particles is larger than a certain limit. Let’s test that! (at

5

http://astro.u-strasbg.fr/˜ koppen/maxwell/ you will find a JAVA applet which
does the same simulation)

b what happens if we deviate from our assumptions? For example, we could place
the moons on a slightly elliptical orbits. What happens? Does the criterion still
hold? What happens if we make this orbit even more elliptical? Does an increase
of ellipticity lead to a higher or lower stability?

c If your program is sufficiently fast, let’s do it fully in three dimensions, and let
us place the satellites in circular orbits, but each one with a slightly different
inclination angle with respect to the plane of the ring. What does that do?

d etcetcetc

6

