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1 Astrophysics
Many problems in astrophysics deal with the fluid dynamics: the formation and evo-
lution of galaxies, stars, and planet systems, and the evolution of the interstellar and
the intergalactic gas are examples. These problems require the solution of the hydro-
dynamical equations, which are partial differential equations and thus demand a lot of
computer time. To solve the equations in a most efficient and accurate way, a number
of methods have been devised. There are the approaches based on a fixed or adaptive
spatial grid, such as the finite difference methods (our exercise on One-Dimensional Hy-
drodynamics uses this approach), which describe the variables of the gas distribution –
density, velocity, temperature – at discrete positions in space. Usually one has to specify
the geometry of this spatial grid and the symmetry: the collapse of a nonrotating star
can be done in one spatial dimension, assumung spherical symmetry. Treating a system
with rotational symmetry, sunch as an accretion disk or a spiral galaxy would require the
greater expense of two dimensions. But dealing with configuration without any symme-
try, such as the collision of two black holes or two galaxies require a three dimensional
approach which constitutes an even greater number of computer operations. Evidently,
the number of operations determines how fine the spatial grids can be made to obtain
results in reasonable times, but this limits the fine structure one can study in that system.

In the SPH approach (for an introduction, see the first chapters of Monaghan, 1992)
the properties of the fluid are represented by the distribution of a large number of par-
ticles which move freely in space, without the constraint of a discrete and thus finite
spatial grid. The particles follow the forces formulated in such a way, that the average
properties of the particles – such as their density – behave as closely as possible the
equations of hydrodynamics. Thus, the particles do not represent real gas particles, but
it’s their average that matches the physics. Since there is no spatial grid to limit the
resolution and no imposed symmetry of the problem, this method is well suited to tackle
problems that are asymmetric or whose spatial symmetry cannot be easily predetermined.

Of course, the SPH approach has its limitations: the resolution depends on the number
of particles ... In this exercise we want to get a first experience with this method. Initially
we shall consider the simple one-dimensional problem, the linear shock tube. Its solution
is well known, and of course it can also be computed with the finite difference methods.
From this example, we can learn the behaviour, the advantages and the limitations of
an SPH code, and how its computational parameters have to be chosen to get reliable
results. If this works well and sufficiently fast, we can quite easily extend the code into
two and three spatial dimensions and study other problems.
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2 How to move many particles
The core of an SPH code is the propagation of particles under the influence of some force.
Suppose that we know the acceleration (in the three components ai(t)) of a particle at a
certain time t, we can compute the change of its velocity components during a small time
step ∆t:

vit + ∆t = vi(t) + ai(t) × ∆t

for all components. Here we assume that during that time intervall the acceleration is
constant and equal to its value at the ’old’ time t. This is only an approximation, and
we might construct more sophisticated and more accurate, but also more complicated
methods. But let us stick to this simple approach, wich is called ’explicit’, since we need
only information available at the ’old’ time t in order to compute the velocity at the ’new’
time t + ∆t.

The next step is to use the velocity to compute the new position. In principle, we could
use the ’old’ velocities, the ’new’ ones, or some combination. If we use the ’new’ velocities
vit + ∆t and write

xit + ∆t = xi(t) + vi(t + ∆t) × ∆t

so that we now also use information from the ’new’ time – this approach is called implicit
– it can be shown that the combined method conserves angular momentum for the case
of accelerations due to a central force. Please verify analytically that this is true, i.e. that
the angular momentum (remember: L = r × v?) after one time step is equal to the one
before. The fact that this is mathematically valid has the nice consequence that our code
can be exspected to conserve angular momentum with the accuracy of the representation
of numbers by the machine!

At time zero, we have to specify the position and the velocity of each particle, and for
each component. We shall describe that below.

As a simple test case, we can compute the movement of a particle in the gravitational
field of another body:

ai = −
GM

r2

xi

r

with the mass M of the body generating the gravitational field, and r =
√

x2 + y2 + z2.
To make things simple, we choose an adimensionalised system of units: setting GM = 1,
the speed for a circular orbit at a radius r = 1 is v = 1, and the orbital period is 2π.
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3 How to compute physical quantities
At the heart of SPH is an interpolation approach, whereby any physical quantity is ex-
pressed by the average of the property over the distribution of the particles:

< A(r) >=
n

∑

i=1

mi

Ai

ρi

W (r− ri)

The sum goes over all the n particles, which have masses mi (but we shall assume that all
have the same mass mi = 1), the property Ai, and at their current position there is the
density ρi. Depending on the distance between the point of interest r and the particle ri,
we apply a smoothing by a function W . This function depends on a smoothing length h;
it should be normalized to unity, and converge to a δ-function in the limit of h → 0.

More concretely, we shall use the commonly used weighting function (or kernel) from
page 554 of Monaghan (1992):

W (r) =
σ

hk
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where q = r/h. σ = 2/3, 10/7π, 1/π is a normalization constant for k = 1, 2, and 3
dimensions, respectively.

For example, the mass density of the gas is simply:

< ρ(r) >=
n

∑

i=1

W (r− ri)

To compute other quantities, including the acceleration, we shall need the gas density at
the position of particle k

ρk =
n

∑

i=1

W (rk − ri)

4 How to compute the accelerations
In the isothermal shock tube the gas is driven only by the gas pressure. As explained in
Section 3.1 of Monaghan (1992), the j-component of the acceleration of the particle k can
be formulated as (his Eq. 3.3)

aj(k) = −
n

∑

i=1

(
Pk

ρ2

k

+
Pi

ρ2
i

)
∂

∂xj

W (rk − ri)

(See also e.g. Kitsionas & Whitworth 2007). The gradient of the smoothing kernel is

∂

∂xj

W (r) =
dW (r)

dr

∂r

∂xj

=
dW (r)

dr

xj

r
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Since W is given analytically, we can also compute the derivative analytical and write a
routine for that function. Here we also see that the acceleration is due to a central force,
hence our method for the propagation of the particles will conserve angular momentum.

A isothermal ideal gas of number density n and temperature T has the pressure

P =
3

2
nkBT

and the mass density
ρ = mn

with the mean molecular mass m. The ratio

P

ρ
=

kBT

m
= c2

is the square of the isothermal sound speed c. This gives for the expression in the accel-
erations

Pk

ρ2

k

=
c2

ρi

5 Initial conditions
In the shock tube we have the following initial configuration: one half of the volume is
filled with gas of high density, the other contains gas at a lower density. To represent this,
we may place a correspondingly higher number of particles in the section which contains
the denser gas. In each section, the particles are evenly distributed, and their initial
velocity shall be zero.

6 Suggestions on how to proceed
The best way is to start with a simple code to compute the orbit of a single particle in
the gravitational field of another massive body. This program should nicely work. One
expects that with a constant time step of 0.001 (how many points to make one orbit?) you
should get good results. But do check the conservation of angular momentum of the code!

As a next step, one builds the SPH code in one dimension: implement the various
functions and routines, make sure that the weighting function has the correct form and
behaviour. It might be good to create the initial configuration of the particles and then
compute the gas density from the formula, to see how the smoothing works. Then comes
the part which computes the accelerations. This essential part contains loops over all the
particles and it will also be called at every time step, so be careful not to waste time
in recomputing the same things ... Also be careful with the indices of the various data
vectors. It is very easy to overlook a very small error or simple typo, and spend weeks of
trying to find out why the results are so weird or nonesense ...!
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The main features of the shock tube should be obtained: that the dense gas flows into
the empty section by forming a shock. You can compare with the results of a finite differ-
ence code, e.g. someone in the group chose that exercise, or check with my hydrodynamics
applet. The quality of the results depend on the various computational parameters: num-
ber of particles, length of the time step, the value of the smoothing length h. Find out
which parameter influences the results in what way, and how to choose good parameters.

SPH is a bit problematic with borders and boundaries. Here, we do not take any spe-
cial measures to improve this ... so the particles will drift out of the computational region
at each end. Don’t worry about that.

If everything works nicely in one dimension, why not go into two or three dimensions?
The formulae are easy to extend into more dimensions. Obviously, one will need more
particles to cover the object, and one has to find good ways to plot the results. We can
also add other forces, such as self-gravity, and try to find some interesting examples to
study.
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The book ”Numerical Recipes” is available in the MS2 library.

There is a test version of a Java applet - but still without any explanations – available
at
http://astro.u-strasbg.fr/~koppen/sph/

An Applet on the computation of the gravitational two-body problem is available at
http://astro.u-strasbg.fr/~koppen/body/TwoBody.html

A Java applet for one dimensional hydrodynamics (finite difference method for the
shock tube) is available at
http://astro.u-strasbg.fr/~koppen/hydro/Hydro.html
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