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1 Astrophysics

Planetary nebulae, H II regions, and supernova remnants consist of warm ionized gas
which emits many bright emission lines. Many of the lines are produced by excitation of
the ions following collisions with the free electrons in the plasma. The intensities of these
lines depends on the ionic abundance and the temperature and density of the electrons.
The intensity ratios of certain lines depend strongly on the electron temperature Te (such
as [O III] 5007/4363 Å, [N II] 6584/5755 Å), others are sensitive to the electron density
ne ([O II] 3727/3729, [S II] 6717/6731). Therefore it is possible to deduce from observed
line intensity ratios the averge values of Te and ne in a nebula. If one assumes that these
values are representative for the entire object, one can compute the emissivities for all
lines and thus determine from the observed spectrum the chemical composition of the
nebula. For instance, the H II regions allow to study the present state of the interstellar
gas, whereas planetary nebulae can tell us the chemical composition of the gas from which
the central star had been born, which can be several 109 years ago.

The collisionally excited lines are very sensitive to the electron temperature. In order
to get accurate abundances, one would want to measure Te as accurately as possible. How-
ever, it is known from theoretical models that in such a nebula the electron temperature
is unfortunately not constant. Furthermore, in some well-observed objects one finds that
the temperatures derived from different line ratios do not agree with each other. Finally,
high resolution images shows that many nebulae are not a body of uniform density, but
instead they contain many small blobs and condensations. Thus, the idea that there are
fluctuations of the electron temperature has been around for many years. How does this
affect the interpretation of the spectra?

It has also been known for quite a while that in the presence of temperature fluctuations
the apparent temperature is somewhat higher than the true average value. In this project
we shall consider the line ratio [O III]5007/4363 and measure this effect.

2 The equations

2.1 Excitation of the Ion

We can model the O++ ion as a three-level ion; the 5007 line is emitted when the ion
goes from its first excited state (level 2) into the ground state (level 1). The 4363 Å line
is the transition from level 3 to level 2. The transition from level 3 to 1 is a line in the
ultraviolet, and observable only from space. The data is given in this table. Note that
the energies are in the spectroscopist’s favoured unit, inverse centimetres, which comes
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from E = hν = hc/λ.

level energy [cm−1] statistical weightg

1 0.0 9
2 19967.1 5
3 42879.6 1

This model is somewhat simplified, but it is accurate enough to be used even in serious
interpretation of spectra.

The three transitions are radiative ones, due to spontaneous emission. They are charac-
terized by the Einstein A-value, which is the inverse lifetime of the upper state. Between
all levels there are collisional transitions caused by the electrons, which are described by
the collision strength Ω. Both atomic constants can be computed by quantum mechanical
models of the ion, and are listed in the following table:

transition A [s−1] Ω

2 → 1 0.0196 2.17
3 → 1 0.223 0.276
3 → 2 1.78 0.617

In a gaseous nebula there is no thermal equilibrium, because the densities are so low,
between 10 and 10000 atoms per cubic centimetre. But we can assume that there is a
statistical equilibrium for the states of atoms and ions, i.e. there is a stationary balance
between the sum of the processes that populate and those which depopulate a level. This
condition allows us formulate a system of linear equations (”rate equations” or ”statistical
equations”) from which we can compute the population numbers, i.e. what fraction of
ions can be found in each state.

In general the rate equations should include all processes between the levels, whether
it be radiative or collisional. Because of the low densities in nebulae, we can simplify the
problem:

• we need to consider only the lowest levels (here: 3), which includes the ground state
and a few essential excited states. For many ions such as oxygen, nitrogen, neon
etc. the excited states are meta-stable states. The only radiative deexcitation to the
ground state are ”forbidden” transitions, which cannot proceed via the usual electric
dipole radiation. Therefore they have much longer lifetimes (order of seconds) than
normal states (10−8s.

• radiative processes are only due to spontaneous emission. Because the gas is far
away from the central star, all other radiative processes: absorption and induced
emission can be neglected.

• the transitional probabilities for the electron collision induced transitions can be
computed from simple formulae which depend on electron density and temperature.
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For a two-level system one gets these rate equations:

0 =
dn1

dt
= −n1C12 + n2(A21 + C21) (1)

0 =
dn2

dt
= n1C12 − n2(A21 + C21) (2)

where n1 and n2 are the number densities of ions in the levels 1 (ground state) and 2. A21

is the Einstein coefficient for spontaneous emission of the line produced by the transition
2 → 1. The rate coefficients for collisions with electrons C12 (for excitation) and C21

(de-excitation) are proportional to the density of the electrons:

Cik = neqik (3)

with

q21 =
8.629 10−6

√
Te

Ω12

g2

(4)

and

q12 = q21

g2

g1

exp(−
E2 − E1

kTe

) (5)

Here the gi are the statistical weights and Ei the energies of level i. The ground state
has E1 = 0. The collision strength Ω12 is a measure for the effective cross-section for the
ion-electron interaction.

The resulting homogeneous system of linear equations is linearly dependent, but it
already permits to compute the ratio of the level populations:

n2

n1

=
C12

A21 + C21

(6)

To get a unique solution, we need to add the condition that the total number of ions in
all states shall be conserved

n1 + n2 = nion (7)

The solution of this simple two-level ion is possible by hand, and it constitutes an impor-
tant tool to check your program!

In an analogous way, we obtain the equations for a multi-level system: in stationary
equilibrium for level i the total loss rate (left hand side) is balanced by the sum of all
gains (right hand side)

ni

m
∑

k 6=i

Pik =
m

∑

k 6=i

nkPki (8)

with the rate coefficients Pik for the transition i → k. Written as a matrix, we have (for
m = 5)

(n1...n5)



















−
∑

k 6=1 P1k P12 P13 P14 P15

P21 −
∑

k 6=2 P2k P23 P24 P25

P31 P32 −
∑

k 6=3 P3k P34 P35

P41 P42 P43 −
∑

k 6=2 P4k P45

P51 P52 P53 P54 −
∑

k 6=5 P5k



















= 0 (9)
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The diagonal terms of the matrix are the loss terms. The upper-right triangle are the gains
by excitations from lower levels, the lower-left triangle are the gains by de-excitations from
higher levels. The rate coefficients are

Pik =
{

Aik + Cik for i > k
Cik for i < k

(10)

To get a unique solution, we can substitute for example the first line by the particle
conservation:

m
∑

k=1

nk = 1 (11)

Since we shall only be interested in the intensity ratios of lines, we do not need the absolute
population numbers. It is sufficient to normalize the sum of all levels to unity.

2.2 Line emissivity

The solution of the rate equations gives us the population numbers. These are used to
compute the rate of emission niAik of photons in a line i → k and the emissivity of the
gas (unit: erg cm−3 s−1 sterad−1)

jik =
hνik

4π
niAik (12)

This is the power which a unit volume of the gas radiates per unit solid angle (in all
directions: solid angle = 4π) in this line.

Fortunately, gaseous nebulae are optically thin in almost all lines; this means that
the total emitted power and hence the observed intensity are just the sum of all the
emissivities, integrated over the entire volume of the object. And thus the intensity ratio
of two lines is equal to the ratio of their emissivities:

Iik/Ilm = jik/jlm (13)

And there is a small correction about the wavelengths: for optical lines one prefers the
wavelength in air, which is 1.0003 times smaller than the vacuum wavelength from the
energies ...

3 How to do it

The main idea is to consider a line of sight over which the electron temperature fluctates
with a given amplitude. We sum up from all these emitting gas elements the emissivities
of the 5007 and the 4363 line and compute their ratio. From this ratio we can derive the
temperature, if we interpret it with a model of a constant temperature.

We do not need to consider really the extend in space of this line of sight; we can simply
compute the emissivities from gas with different temperatures and sum up thier results.
The temperatures are randomly picked, with a gaussian distribution about a given value
and with a certain dispersion. Thus we do a kind of Monte Carlo simulation.
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• The best thing is to start with the heart of the problem: the assembly and the
solution of the rate equations. For the solution of a system of linear equations you
can either write your own subprogram for a Gauss elimination method or take a
routine from the ‘Numerical Recipes’. It is best to start with a two-level system
and to check it against your hand calculations. Then you add the ”real” O++ ion.
Make sure that you get all the indices right ... is is very easy to make mistakes here
and spend hours finding the errors!

• With the real oxygen data, you should be able to reproduce the relation of the
intensity ratio with electron temperature (e.g. Osterbrock ”Astrophysics of Gasous
Nebulae” or other books). Often, the ratio is given as (5007+4959)/4363 ... the
intensity ratio of 5007/4959 is 3.0 independent of temperature or density.

• This relation can be fitted with a simple formula

I(5007)

I(4363)
= 6.0 exp(

32500K

Te

) (14)

Determine the two fit constants as accurately as possible using your results. You
shall later use this formula to ’measure’ the temperature from the ratio of the average
line intensities.

• For the Monte Carlo approach we need a random number generator: in Java, it is
Math.random(), you can use routines from ’Numerical Recipes’ or from the Inter-
net. But check whether they work properly on your machine and generate random
numbers uniformly distributed between 0 and 1.

• Since we want to distribute the temperatures with a gaussian fluctuation about a
central value, we need to modify the generated random numbers. This is done by
the transformation method, described in ‘Numerical Recipes’: Consider

y(t) =
∫

t

xmin

f(x)dx (15)

y is an invertible function between 0 and 1. For a uniform random numbers r the
values t = y−1(r) will be distributed as f(x). So before any computations, we
compute at the start of the program for a sufficiently fine grid of values of t the
values y, and store them in arrays. Whenever we need a new random number, we
get a uniform random number r, look up the nearest position in the y array, and
take the corresponding value of the t array, perhaps with a linear interpolation. For
the gaussian distribution, ‘Numerical Recipes’ also gives other methods.

• After putting these things together, you can compute the emissivities of the 5007
and 4363 lines from an assembly of many gas elements at temperatures which are
randomly distributed about the central value. Sum up the emissivities for each line
separately – this is what we do when we look with the spectrograph at a position
in a nebula – and compute the ratio.
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• determine with your fit formula the apparent electron temperature. How does it
differ from the central value that you had assumed? How does this change with
different values for the dispersion in the temperature?

4 Further possibilities

4.1 Density fluctuations

Fluctuations in the density are not so important, because the OIII line ratio does not
depend strongly on that parameter. However, at higher densities this becomes more im-
portant. One could also think of using a gaussian distribution in the logarithm of the
density. How does this show up?

4.2 N+

Here are the data for ionized nitrogen. The lines of this ion are a bit more sensitive
to electron density. It would be interesting to see whether the difference between true
average temperature and apparent mean temperature compares with OIII.

level energy [cm−1] statistical weightg

1 0.0 9
2 15185.4 5
3 32558.0 1

transition λ [Å] A [s−1] Ω

2 → 1 6584 0.0030 2.68
3 → 1 ... 0.038 0.353
3 → 2 5755 1.12 0.411

5 Literature

D.E.Osterbrock: ”Astrophysics of Gaseous Nebulae ...”.

The book ”Numerical Recipes” is available in the MS2 library.

There may be a test version of a Java applet - but still without any explanations – is
available at
http://astro.u-strasbg.fr/~koppen/tempfluct/
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