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1 Warning

This exercise is still experimental. Your work and your experiences will help to better
define this exercise. Your spotting mistakes and any comments are welcome.

2 Astrophysics

Accretion – the loss of potential energy of matter as it plunges down the gravitational well
of compact objects – is a very efficient mechanism to convert gravitational energy into
radiation. It is responsible for a wide range of high energy phenomena in space: Quasars
are powerful emitters of radiation, being often much brighter than their host galaxy, but
all radiation comes from a small region in the galaxy’s centre, where a massive black hole
breaks up stars by tidal forces and accretes the gas. On a much smaller scale, there are
X-ray binaries which contain gas hot enough to make them bright in the X-ray range.
Dwarf novae have periodic and stochastic outbursts (enhanced luminosity in optical and
X-rays). Here, gas from a companion red giant star is accreted by white dwarfs, neutron
stars, or small black holes.

Because of the conservation of angular momentum, a parcel of gas cannot reach directly
a compact object, such as a star, by simply falling towards it radially. Any small amount
of initial angular momentum would make the parcel to follow a hyperbolic orbit around
the star. Thus radial accretion is very inefficient. On the other hand, a viscous disk
provides a means for a chunk of matter to get rid of angular momentum, as the friction
with other gas elements will convert kinetic energy into thermal energy which is radiated
away into space. Thus the gas element constantly loses speed and performs a spiral orbit
towards the central object.

The standard model for X-ray binaries and novae – Roche-lobe overflow into an accre-
tion disk – explains the nova outbursts by an instability of the accretion disk switching
from an low-temperature state into a high-temperature state because the vertical struc-
ture of the disk changes from opaque to transparent as gas gets ionized.

The concept of viscous disks is also important in other contexts: the gaseous disks
in spiral galaxies are modeled ain this way, the viscosity being due to turbulence in the
interstellar medium. Stars may also accrete matter by this process during their formation,
forming planetary systems around them.
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3 The equations

We represent the disk by a thin disk, i.e. we shall not consider the variation of phys-
ical quantities with height above the plane. Integrating over all heights, we no longer
consider (volume) densities but surface (or column) densities. And all other properties
are represented by their value projected into the plane. The basic equations are those
of hydrodynamics, written in cylindrical symmetry, and integrated over all heights. The
conservation of mass becomes

∂Σ

∂t
+

1

r

∂rvrΣ

∂r
= S(r, t) (1)

where S is the mass accretion rate – it would be zero everywhere except at the outer
boundary, where the gas from the companion arrives. The radial drift velocity vr is
computed from the conservation of angular momentum rvφΣ

∂rvφΣ

∂t
+

1

r

∂rvrrvφΣ

∂r
= −1

r

∂r2τ̃rφ
∂r

(2)

with the azimuthal velocity vφ. The term on the right hand side is the torque acting on
the gas element, due to the viscosity. The r, φ component of the height-averaged viscous
stress tensor τ̃

τ̃rφ = −rνΣ
∂Ω

∂r
(3)

depends on the viscosity ν and the angular frequency Ω = vφ/r of the disk’s rotation.
Often one considers a simple Kepler’s law, if the mass of the disk can be neglected against
the mass of the central object. Any part of the disk at radius r is assumed to be in circular
orbit around the central mass M and

vφ(r) =

√

GM

r
(4)

If we can assume that the disk rotation is independent of time, we can simplify Eqn. 2
by taking out the derivatives of Σ. Then noting that for all points in the disk S = 0, we
can subtract Eqn. 1 and finally get

∂r2Ω

∂t
Σ +

1

r

∂r2Ω

∂r
Σrvr =

1

r

∂

∂r
(r3νΣ

∂Ω

∂r
) (5)

As Ω was assumed to be constant in time, the first term vanishes and one simply gets an
equation for the drift velocity

vr =
∂r3νΣ(dΩ/dr)/∂r

Σr(d(r2Ω)/dr
(6)

Check whether for the keplerian case you get Eqn.(1) and the expression for vr in
Cannizzo (1993).
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3.1 The basic viscous disk equation

For a kepler-disk we take the equation for the radial drift velocity (Eqn. 6) and put it
into the momentum equation (2) to get

∂Σ

∂t
=

3

r

∂

∂r

(

r1/2
∂r1/2νΣ

∂r

)

(7)

e.g. Cannizzo (1993).

3.2 Stationary Solution

This standard equation has a stationary solution: setting time derivative to zero,

r1/2
dr1/2νΣ

dr
= const. (8)

which means that the surface density profile would follow a law like

ν(r)Σ(r) = const. (9)

If we follow Cannizzo for the viscosity ν = (2/3)(αRT/(µΩ)) then we get for a kepler-disk
Σ ∝ r−3/2.

This solution is useful for checking the code:

• starting with such a profile, and taking a constant mass accretion rate, the code
must stick to this solution. Any deviations may indicate some error in the program,
and those which perhaps grow in time must be of numerical nature.

• starting with a rather different density profile, the program should approach the
stationary case, and finally stay there

• changing parameters, such as α or taking different rotation laws, should result in
the programm to find the other stationary solution

If not, you’ve got a problem!

4 Energy Balance

Next, we add the equation for the energy balance in order to compute the temperature T
in the mid-plane. We take it from Cannizzo (1993):

cpΣ
∂T

∂t
= 2(H − C + J)− R

µ

ΣT

r

∂(rvr)

∂r
− cpΣvr

∂T

∂r
(10)

with the rate of viscous heating

H =
9

8
νΩ2Σ (11)
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the cooling of the gas by radiation
C = σT 4

eff (12)

and the radial energy flux carried by viscous processes

J =
3

2

νΣ

r

∂

∂r

(

r
∂T

∂r

)

(13)

The fourth term is the energy release from p∆V work, and the final term is the advective
transport of energy carried by flows over temperature gradients.

The effective temperature represents the radiation emitted by all the vertical layers of
a section of the disk. Its computation requires solving the vertical structure of the disk,
along with radiative transport and the equation of state of the gas (and ionization) all
of which is rather complicated. For the thin disk approximation, one solves the vertical
structure separately, and fits the results in some convenient forms.

Along with a variable temperature, we now must take ito account that the viscosity
depends on temperature:

ν =
2

3

αRT

µΩ
(14)

where α is a fudge-factor, which one adjusts to observations. People find that is is in the
range of 0.0001...1. We shall keep this factor undetermined, and check our method if it
works for any value of α!

4.1 Approximation Teff = T

As a first step we shall make the crude approximation that the effective temperature is
equal to the temperature of the gas in mid-plane.

For simplicity, we may first use for the specific heat a constant value:

cp/R ≈ 10 (15)

and later the analytic expression (5) of Cannizzo (1993), to take into account that the
gas becomes ionized above temperatures of 10000 K.

From the form of the energy equation, it is obvious that there must be a steady-state
solution. Setting ∂T/∂t = 0 gives an ordinary differential equation for the temperature
profile T (r). This can be easily done numerically. I haven’t checked whether one could
also do it analytically. Looks nasty, but perhaps you can try? Note that this steady state
involves both the equation for σ and for T .

Of course one can also find this steady state soltuion but following the time evolution
of the whole disk, starting from some arbitrary initial solution and settling into the steady
state.
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4.2 The S-curve (simplified)

Viscous disks have an interesting behaviour which is used to explain the periodic out-
bursts of cataclysmic variables: the disk may perform nonlinear oscillations between a
state in which the disk is essentially cool, dense, and thin and a state where it is hot, less
dense, and less thin.

If one computes the vertical structure in all necessary detail, such as radiative trans-
fer, ionization of the elements, selfgravity, and using proper atomic data (opacity κ), one
finds the true relations between Σ and the mid-plane temperature T and the effective
temperature Teff . These are given in Cannizzo (1993).

Both at low and high temperatures Σ(T ) increases with T . But at about T ≈ 10000 K,
hydrogen (which is 90 percent of the gas) becomes ionized, and the opacity κ in the optical
is substantially smaller, causing Σ to decrease with T . The plot of e.g. Teff as a function
of Σ thus shows the form of an ”S”. The portions with positive slope are stable, and there
is a cool and a hot branch; in the middle section the vertical structure is unstable, as it
would either heat up until it reaches the hot branch, or cool down.

Cannizzo gives for the hot branch

Teff = 3334K M
9/56
1 r

−27/56
10 α2/7µ−15/56 Σ5/14 (16)

where r10 = r/1010 cm and the mass M1 = M/M⊙ of the central object in solar masses.
For the hot ionized branch, one has µ ≈ 0.6 since electrons contribute to the number
density, but almost nothing to the mass density (Neutral matter of solar composition has
µ ≈ 1.3). This fit formula is valid for

Σ ≥ Σmin = 8.25g cm−3 r1.0510 M−0.35
1 α−0.8 (17)

and Teff,min = 7951K (M1/r
3
10)

0.05. The cool branch

Teff = 946K r−0.8875
10 α0.645 Σ0.75 (18)

is valid for
Σ ≤ Σmax = 11.4g cm−3 r1.0510 M−0.35

1 α−0.86 (19)

and Teff,max = 5870K r−0.1
10 . The instable branch is computed by logarithmic interpolation

between the two points min and max.

Rather than using the full recipe, as in Cannizzo (1993), I suggest that we investigate
which shape for the S-curve is neccessary to get an oscillating disk. Let us take an arti-
ficial Σ(Teff)–relation, whose shape we deform from a monotonic relation to the S-curve.
One way to do this, is to define the positions of the turning points for the S-curve, and
find a simple analytical function which goes through the two points.

In this way we can find out how the behaviour of the disk solutions changes, if one
adds a non–linearity of this kind. As long as the S-curve feature is weak, the solutions will

5



resemble what we had computed before. At some degree of S-curve, we will find that the
solutions are different. Will this be drastic, will this be a sharp transition of behaviour?
I do not know. Let’s find out.

People have found that the presence of the S-curve alone does not make oscillating
disks. To make well–separated outbursts, one needs the parametre α to be larger on the
hot branch than along the cool branch. Cannizzo’s (1993) model for SS Cyg assumes
αcold = 0.02 and αhot = 0.1. How critical is such a choice?........

5 Why and how the disk oscillates

The basic behaviour of a viscous disk is that it likes to settle into its stationary solution. If
one increases the inflow of gas at the outer rim, a density enhancemnt will propagate from
the exterior towards the centre, and redistribute the matter, so that the new stationary
solution is approached.

Suppose that the disk is perturbed by putting up the density at some intervall in radius.
The excess matter will flow towards the interior – for constant temperature models you
can show that analytically by checking what the sign of the radial drift speed would be!
Thus, the density at that particular intervall will decrease. Consider now what happens
when we treat a disk with the energy equation. Let us assume that the disk in this inter-
vall is in the hot state. As the density drops, so will the effective temperature, but this
will occur only until we reach the end of the hot branch. At that point, the temperature
drops suddenly to the cold branch. Since α on the cold branch is smaller, which means
a lower viscosity, and hence a smaller radial drift velocity. This means that the matter
flow from the outer regions will be slower, and because of the accumulation of gas in the
intervall the density will increase. So we move up on the cold branch, until its end, where
we jump up to the hot branch. The larger viscosity on the hot branch will make the radial
streaming faster, the density decreases and so on ....

The existence of this cyclic behaviour (called Limit Cycle) requires that the densities
are always in the proper range, and that the jump in α is the proper size. So, if the mass
accretion rate is too high, the densities remain too high to make possible such behaviour.
The disk would always remain in its hot state. Likewise, if the accretion rate is too low,
the disk will remain in the cool state. The range of values for the accretion rate, which
make the disk oscillate, may be small, may be large, may be at astrophysically realistic
values – it depends on the shape of the S-curve, and the various other parameters .........
When you have found a parameter set for an oscillating disk, change one parameter to
see whether it is a critical parameter and how abruptly the oscillations stop....
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6 How to solve it numerically

6.1 Finite Difference Method

We shall use the method of finite differences. This means that we divide space and time
(here: radius and time) into many small intervals – the sizes of these intervals must be
chosen so that one get a sufficient resolution. Thus, all the functions of the problem
(here: density, temperature, velocity, etc.) are thus given only on these discrete points.
All derivatives will be approximated by their differences on these grids. For example,

df

dt
=

f(t2)− f(t1)

t2− t1
(20)

To solve the differential equation dy/dt = f(y, t) we get a scheme to compute from the
’old’ value y(t) the ’new’ value at one time-step later:

y(t+∆t) = y(t) + ∆t · f(y(t), t) (21)

Note that we’ve used on the right-hand side only data that is known at the ’old’ time, so
we use an explicit method. The size of the time step ∆t determines the accuracy of the
calculation, obviously a smaller time-step makes it more accurate.

To solve a partial differential equation, we chose e.g. the simple explicit method above
(which is a 1st order method) to do the time stepping. All other derivatives (in radius)
are also computed from formulae of this type, but evaluated of course at the old time:

∂

∂r
f(ri, t) ≈

f(ri, t)− f(ri−1, t)

ri − ri−1
(22)

This is a simple first order recipe, which might also cause problems, because it is asym-
metrical in radial direction. The simple second-oder scheme is symmetrical

∂

∂r
f(ri, t) ≈

f(ri+1, t)− f(ri−1, t)

ri+1 − ri−1

(23)

but it has an instability, because the derivative at radius i does not depend on the function
at that point....

6.2 How to make differencing formulae

In a finite difference method we need formulae that approximate differential quotients by
difference quotients. Here is a reminder how to make such a formula with a given order
of accuracy:

Suppose I want to approximate the derivative in the central point x2 by using three
points of the grid (x1, x2, x3), and I demand second-order accuracy

dy

dx
≈ A · y(x1) +B · y(x2) + C · y(x3) (24)
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First, we express the function y(x) by its Taylor series about the (desired) midpoint (with
h = x− x2):

y(x) = y2 + h · y(1)2 +
h2

2
· y(2)2 +

h3

3!
· y(3)2 + ... (25)

or

dy/dx = y
(1)
2 +

h

2
· y(2)2 +

h2

3!
· y(3)2 + ... (26)

When we demand second-order behaviour

dy/dx = y
(1)
2 +O(h2) (27)

this means that the term depending on y
(2)
2 should vanish. On the other hand, we evaluate

the right hand side of Eqn. 24 putting in the Taylor expansions

dy/dx = A(y2 + h12 · y(1)2 +
h2
12

2
· y(2)2 + ...)

+ By2

+ C(y2 + h32 · y(1)2 +
h2
32

2
· y(2)2 + ...) (28)

with hik = xi − xk. If this should be equal to Eqn. 27 up to 2nd order for any function
y(x), we get a system of linear equations for the coefficients A, B, C:

A +B + C = 0

A · h12 + C · h32 = 1

A · h2
12/2 + C · h2

32/2 = 0 (29)

which gives

A = − h32

h12(h12 − h32)

B = − h2
12 − h2

32

h12h32(h12 − h32)

C =
h12

h32(h12 − h32)
(30)

This is the generalization for the well known formula for an equi-spaced grid (h32 =
−h12 = h):

A = − 1

2h
B = 0

C =
1

2h
(31)

With this method one can derive formulae for any derivative at any point with any
accuracy. Obviously one has to choose the number of points in accordance with the
required accuracy!
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6.3 The grids

For the discretisation in time, we shall take the simplest one, i.e. with a constant time-
step. What size you need, depends on the accuracy you want, and is best found out by
experiments. It should not be too large, as the program will tell you rather quickly by
’exploding’ sooner or later.

For the discretisation in space, let us first try a simple radial grid with constant inter-
val. Since the problem has a symmetry centre at the origin, and terms with 1/r will grow
there beyond any limit, it might be a good idea to concentrate the grid towards the origin.
Bath & Pringle and others use a grid equally space in

√
r rather than the simple linear

one. This means that one cannot use discretizaion formulae built for constant step size,
or one transforms the problem into that space, by working not with radii, but with

√
r.

I recommend that you try out various things. Which one do you find to be the best one???

For a method stepping explicitly in time, the Courant-Friedrichs-Levy condition must
be obeyed, if the method should not explode. The time step dt must be smaller than the
time required for the fastest element to cross a radial grid cell:

dt < min
i

|∆ri
vi

| (32)

Usually, one does not take the full time step, permitted by this formula. See what happens
if you don’t obey it!

6.4 Boundary conditions

In our problem the matter arrives at the outer rim, and flows towards the inside. At the
outer boundary we thus have to specify how much mass arrives in each time interval...

A simple method is to keep the surface density at the outermost point (rn if we have
n radial points) fixed to some value which depends on the mass accretion rate:

Ṁ = 2πrn · Σ(rn) · vr(rn) (33)

With the formula for the drift velocity (Eqn. 6) and the expressions for rotational fre-
quency Ω and viscosity and the current density profile, one could in principle compute
the required density Σ(rn). I haven’t tried it, but it might be just some complicated non-
linear equation which one could crunch interatively by the bi-section methode (French:
”dichotomie”). May be you try it?

6.5 Transforming the equations

Often, it is not numerically wise to solve the equation in its original form. We are dealing
with a problem with rotational symmetry. So the conservation of mass can also be written
as

∂rΣ

∂t
+

∂rvrΣ

∂r
= rS(r, t) (34)
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So we might use rΣ as a function instead of Σ. Since the surface density Σ will turn
out to trend to large values as one goes towards the centre (cf. the stationary solution
of the kepler-disk), the new variable peaks less at the centre, and the difference formulae
may not make so large errors. In fact, one could perhaps use the profile of the stationary
solution r3/2Σ = const. as a new variable!

6.6 Conservative Formulation

The way I’ve written the Eqns. 1 and 2

∂A

∂t
+

1

r

∂rvA

∂r
= SA (35)

emphasizes that A is a conserved quantity (in rotationally symmetric coordinates). The
second term is called advection; it counts how much of A is transported from and into
a volume by the velocity v. The term on the right is a source term, telling how much is
locally produced (or destroyed) of A. By formulating a discretisation recipe which ensures
the balance of the three terms, one can build a code which strictly conserves quantity A.
Here one would need a scheme in which all that is computed to leave radial element i
with a positive velocity is equal to what is computed to arrive at radial element i+ 1, its
neighbour.

7 Tasks
Here are some suggestions how to proceed:

• make kepler-disks, solving only the equation of mass conservation together with the
formula for the radial drift velocity. Keep Σ fixed for outermost point, and check
for the stationary solution, and whether you can reach it from whatever you start
with.

• experiment with the radial grid and its discretisation recipes

• add a time-dependent mass accretion, and see how the disk takes up this mass,
distributes it in a new stationary solution. How much time does this take?

• next one adds the equation for the temperature, and finds the stationary solution
for the approximation Teff = T

• add the S–curve and try to find oscillations. Does one get oscillations if one assumes
the same α for both hot and cool branch? Does one get oscillations for all mass
accretion rates?.....

• if you could formulate tasks that you find interesting, it would be nice!
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