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Joachim Köppen Strasbourg 2001/02

1 Astrophysics

Why does one do observations? To find out about an object. This may be either some-
thing new, previously unknown, or we wish to determine some physical quantity. In either
case, we compare the observations with our present concepts or models for the object. If
the observations contradict our expectations, we may have discovered something new; if
they agree with the predictions, we are happy that our model is confirmed and we may
be able to derive from the observational data some physical property of the object. This
process is the base of science, and is present in some form whenever we look at the world
around us.

How does one decide whether observations agree with a model? How do we derive a
parameter of the model? How certain are the values we derive? Is it necessary to intro-
duce another parameter? All these questions we have to deal with in the interpretation
of (astrophysical) data. In this exercise we shall go through these problems. We shall
take as a simple example the determination of the radial velocity from the spectrum of
an emission line nebula, and we shall use a general statistical approach which can easily
formulated and adapted to other problems.

You may remember the χ2-method to find the best fit of data to a model, that one
calculates from the difference between observed and predicted data a quantity and one
searches for that value of the model parameter whose χ2 is minimal. Then one can also
give a confidence interval for the parameter, and the absolute value of χ2 gives a measure
of how acceptable this best-fit model is. However, all this is only correct if the errors are
distributed like a Gaussian, and the error amplitude σ is known. In this exercise, we shall
use a more general approach.

The aim of the project is to write a program to make this comparison of data and
model, to create artifical data to test the program, and to apply the program to some real
spectra of a planetary nebula.

2 The Method: Bayesian and Maximum Likelihood

Fits

The principle of the method is this: Suppose we have some observational data Di given at
a number of (wavelength) points, and we wish to explain these by a model which depends
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on some parameter p. This means we wish to determine that value of p for which the
model gives a prediction for the observations that is closest to the data.

To compare the predictions of the model – call them Mi(p) – with the data we also
need to know or assume the source of errors that could lead to deviations between model
and observation. As we shall assume that we have corrected the data for all systematic
errors, we are left with random errors, such as noise in the detector etc. Let us denote
by ψ(x) the distribution function for the probability of an error x. For example, ψ would
be a Gaussian function in the case of white noise in the data (see Section 5). Then, the
likelihood that at point i the deviation between observation and the model with parameter
p is ψ(Oi −Mi(p)). If the noise amplitudes in the various points are not correlated with
each other, the likelihood that the deviation in point 1 is O1 −M1(p) and in point 2 is
O2 −M2(p) ... etc ... is the product

Λ(p) =
n
∏

i=1

ψ(Oi −Mi(p)) (1)

This is the likelihood for the model with parameter p. It is a measure for the ‘distance’
between model and observation, and also for the probability that the model parameter is p.

To find the ”best” value for p, one calculates the likelihood as a function of p and
searches for its maximum. This is the principle of a Maximum Likelihood fit of the data.

Such as fit makes use only of the position of the peak. But one can go further: Bayes’
Theorem from probability theory tells us that the probability for the parameter p af-

ter taking into account the (new) observation is computed from the Likelihood and the
probability distribution for p before this observation:

P (p|O) = (P (p) · Λ(O|p))/
∫

P (p)Λ(O|p)dp (2)

Here P (p) is the prior distribution for p, i.e. what had been known before we use this
present observation. If we want to suppose that we knew nothing about p, we set
P (p) = const. The good thing about this formula is that it tells us how to combine
our previous knowledge about p with the information from the new information, and also
from different observations.

Note that the prior distribution is a normalized probablility distribution, so that the
integral over the parameter space

∫ pb

pa
P (p)dp = 1 (3)

We also note that the integral in the denominator of Eqn. 2 is nothing but a normalization
over the whole parameter space.

The merit of the posterior distribution P (p|O) is that it tells us which values for p
are more probable than others, and by how much. In our simple exercise, the posterior
distribution will be a simple Gaussian-shape function, symmetrical about its single peak;
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but in other problems this is no longer so simple! Of particular value is the computation
of the median value, confidence intervals and error bars. The median value for p is found
by the condition

P (p50|O) = 0.5 (4)

In practice, one computes P (pk|O) for a number of evenly–spaced pk, then searches for
the point closest to P = 0.5, and then makes a linear interpolation in p to find the exact
value for p50. Analogously, the central 90 percent confidence region is found by the two
points p5 and p95.

It is worth pointing out that the form of the error distribution function, and thus the
amplitude of the errors or noise in the data, enters into the likelihood, and may well be
taken as additional parameters! They would not be parameters of the model proper, but
of the instrument. So we also model the instrument.

The formulation in terms of probabilities makes it straightforward to formulate the
demand that a model should fit both observations A AND B:

P (p|A&B) = P (p|A) · P (p|B) (5)

∝ P (p) · Λ(A|p) · Λ(B|p) (6)

The prior and the two likelihoods, representing our initial knowledge and the information
gained by the two observations, are entering equally.

Likewise, if we do not care whether the parameter has one value or the other (for
p1 6= p2), we have

P (p1 or p2|O) = P (p1|O) + P (p2|O) (7)

∝ P (p1)Λ(O|p1) + P (p2)Λ(O|p2) (8)

Or, if we only care whether the parameter is within a certain interval a < p < b:

P (a < p < b|O) =
∫ b

a
P (p|O)dp (9)

∝
∫ b

a
P (p)Λ(O|p)dp (10)

Note here a small inconsistency in the notation: P (p|O) is a probability density i.e. per
unit p interval, so P (p|O)dp is a genuine probability, such as P (a < p < b|O)! Usually,
one does not make a difference in the notation, because it could get quite clumsy. One
may keep in mind that the density P (p) is really dP (p)/dp.

3 The Model

To derive the radial velocity from emission lines we compare the observed line profile with
the line profile ”predicted” by a simple model. The lines are optically thin, so we do
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not have to take into account any modifications of the line profile by radiative transfer.
Furthermore, we shall assume that at any line-of-sight we look at a single thin shell of
gas. We also assume that the motion of the emitting gas ions is dominated by random
thermal motions, perhaps some small–scale turbulence. Under these circumstances the
line profile will be a simple Gaussian, with the width being equal to the thermal Doppler
width

∆λD =
λ0
c

√

kT

mion
+ ξ2 (11)

where ξ is the velocity amplitude of microturbulent motions. We shall deal with a plan-
etary nebula or H II region, and we use the [N II] lines and the Hα line. The electron
temperature T = 10 000K is a very good guess for such an ionized nebula.

Because our observations were done with a long slit across the nebula’s face, we have
some spatial resolution, and by using the spectra extracted from single pixel rows of the
CCD image, we can measure the radial velocity of different parts of the nebula. Because
these single–pixel spectra show only one peak of the line profile, we probably see only a
single shell of plasma in each location. This is nice, as it makes life more easy. But in
many other nebulae one does observe a doubly peaked emission line profile!

So, if there are no turbulent motions, the line width is fixed by the atomic mass and
the temperature. Thus, our unknown parameter is the radial velocity which causes a shift
of the wavelength of the line’s centre. The model line profile would be:

φmod(vrad) =
1√

2π∆λD
exp(−1

2
(
λ− λ0 − vradλ0/c

∆λD
)2) (12)

But this means that the model predicts a certain line shape and width. So we better
check whether this agrees with the observations! We take the line width as another model
parameter and now find the peak likelihood in two dimensions.

The shape of the model line profile may not be the best one. We may try a Lorentz
profile:

φmod(vrad) =
const.

∆λ2L + (λ− λ0 − vradλ0/c)2
(13)

What do you get when you analyze data created with say a Gaussian shape with say
a Lorentz profile? What line width do you get? And what do you get for the maxi-
mum of the likelihood? Since this is not the same line shape, one should expect that the
fit becomes worse, and the maximum likelihood is smaller than if one uses the same line
shape! What is the best line shape for the observations? Can you say anything significant?

The question whether the observed line profiles have this or that shape can be answered
by this method by comparing the data with either type of profile (k = G or L) and
computing

P (k|O) =
∫ wb

wa

P (k, w|O)dw (14)

∝
∫ wb

wa

P (k, w)Λ(O|k, w)dw (15)
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We integrate over all line widths w to get the probability for either model irrespective of
the line width. In comparing P (G|O) and P (L|O) we can decide which model is better.

4 Observational Data

Our observations is a spectrum, the measured flux as a function of wavelength. This is
usually obtained by a CCD, so the data consist of a number (e.g. 1024) of values for
the flux F (i) and the wavelength for each pixel λ(i). The wavelengths are obtained by
calibrating the CCD image with the well known spectrum of a light source – usually a
gas discharge lamp which produces many sharp emission lines.

The flux values are not the fluxes F (λ(i)) at the wavelength λ(i) corresponding to the
pixel’s centre, but as each pixel has a finite size, each CCD element measures the integral
of the true spectrum over the wavelength interval p corresponding to its size:

F (i) =
∫ λ(i)+p/2

λ(i)−p/2
FCCD input(λ)dλ (16)

Of course, we usually take a spectrograph configuration so that the pixel size is smaller
than what we need for a wavelength resolution! But sometimes we have to push the in-
strument to its limits, or we have to squeeze out all information from the data available.
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Figure 1: The spectrum of a (simulated) ionized nebula, showing the emission lines of
Hα 6563 Å, and [N II] 6583 and 6548 Å

5



658065806580 65856580

0

1

00

0.5

1

0

wavelength

in
te

ns
ity

(c) JKplot

Figure 2: The line profile of the stronger [N II] line showing the binned structure of the
data in form of a staircase curve

However, this is not all: The spectrograph has only a finite spectral resolution R =
λ/∆λ which smears out the true spectrum. One may well assume that the function with
which the true spectrum is convolved is a Gaussian of width ∆λ, so that the spectrum
which is registered by the CCD camera is really:

FCCD input(λ) =
∫

∞

−∞

Ftrue(λ)φ(λ+ x)dx (17)

In principle there are further modifications of the spectrum due to the instrument and the
Earth atmosphere, but as they change slowly with wavelength, the data can be corrected
for these effects more easily. So we shall assume that all these corrections have already
been done properly.

When one computes the line profiles predicted by the model, we have to apply all these
same effects to get the predicted flux values for each pixel. This will mean that we have
to convolve the theoretical line profile with the spectrograph’s resolution. For Gaussian
line profiles, we can make use of a nice property of the Gaussians: that the convolution

of them (with widths σ1 and σ2) gives just another Gaussian with width
√

σ2
1 + σ2

2. This
saves evaluating this integral numerically.
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5 Noise and Error Distribution

For the formulation of the likelihood, we need to specify the distribution function of the
error amplitude. Above, we used a Gaussian distribution, which is appropriate for white
noise.

If there is not a single noise source, we might use a different distribution, such as a sum
of two Gaussians of different widths, or a Lorentz function, or whatever else. Do make
experiments!

Let us return to the simple Gaussian:

ψ(x) =
1√
2π σ

exp(− x2

2σ2
) (18)

This means that we have to specify the noise amplitude σ. There are two ways: (a) We
take a portion of the spectrum where we know that there is no emission, so that all the
signal there will be noise, and we simply take the mean and the dispersion of a suitably
large number of pixels. The mean will define the zero level of the flux, while the dispersion
we can take as σ2. (b) Another way is to use σ as another free parameter of our problem,
and to determine which pair (vrad, σ) gives the largest value of the likelihood. And one
gets the confidence region, and the confidence intervals for either parameter. If you do
this, you should in principle get the same value as in the first simple method, within the
confidence region.

6 Artifical Data

In order to test your program and the methods it contains, the best way is to analyze
artificial data created with known parameters.

To simulate the spectral data, we must do

• compute the theoretical line profile, Fmod(λ, vrad,∆λD)

• convolve this profile with the resolution profile of the spectrograph. Note that
if both profiles are Gaussians, the result is simply a Gaussian with width σ2

eff =
σ2
line + σ2

spectrograph!

• for every pixel, integrate this theoretical flux over the wavelength interval

• to simulate the detector noise, we add in each bin an error value to the flux value.
This is a random number distributed like a Gaussian with width σ (the noise am-
plitude) and centered at 0. To generate this kind of random numbers, I recommend
the transformation method which transforms the numbers generated by a random
number generator (see ”Numerical Recipes” available at the DEA library).

7



7 Details on the Real Data

Here are some details about the data that you’ll be able to interpret. These are high
resolution spectra of a recently discovered planetary nebula. The observations were done
by F.Cuisinier and S.Durand with a 1.2m telescope in Brazil. Each CCD image has a
1024 by 1024 pixels. The wavelength scale is 0.13 Å per pixel. Perpendicular to the wave-
length axis, there is spatial information. The emission of the nebula extends over several
rows of pixels. From one of the images, we have extracted a couple of spectra for each
row of pixels close to the center of the nebula. The wavelength region is around the Hα
and [N II] 6548 and 6583 Å emission lines. The resolution of the spectrograph was 0.25 Å.

The data is in the form of an ASCII file containing essentially a simple table of the
flux values for several positions. Each line of the file corresponds to one of the 1024 pixels
in wavelength direction, and contains the flux values in arbitrary units. The wavelength
values are not given, but the first data line is at 6493.3 Å, and the step is 0.13 Å.

Some Notes:
• For our exercise, we effectively need only a portion of the entire spectrum from 6500
to 6630 Å.

• When you search for an emission–free portion, check whether it is also free from
spurious ”emissions” caused by cosmic rays that hit the CCD.

• The line fluxes are in some arbitrary units different from what you compute from
the model. For simplicity, we shall scale the observed and theoretical to the same
value, say that the flux in the line centre should be normalized to 1.0.

8 Types of analysis

In principle, there are a number of free parameters in the interpretation of the spectra:
radial velocity, line width, line shape, noise level. What one could do:

• If we make (reasonable) assumptions about three of the four parameters, we can
determine the remaining one. Thus we deal with one dimension only, so that we
simply plot the curve of the likelihood as a function the parameter. Finding the
peak and determining the confidence interval is easy. The obvious example is the
derivation of radial velocity for a Gaussian line shape of theoretical width, and using
the noise level determined from the dispersion of fluxes in an emission–free portion
of the spectrum. This is shown in Fig. 3.

• Two parameters could be simultaneously determined, if we fix the other two. This
is now a two–dimensnsional problem, and one scans both parameters independently.
Graphically, we can make a contour plot. The confidence region now is that contour
line within which say 90 percent of the total probability are found. The contour
lines often are circles or ellipses (as in our problem), but they may have more
complicated shapes. What does that tell you? Examples for this kind of analysis
are radial velocity and line width, or radial velocity and noise level (Fig. 4).
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• In the two–dimensional problem, one may also compute the ”marginal” distributions
such as

P (q) =
∫ pb

pa
P (p, q)dp (19)

which is the distribution projected into the space of parameter q. It gives the
probability distribution for the parameter q irrespective of what the best value for
p might be. This is of course not the same as the probability P (pfix, q) for a fixed
value pfix! For instance, we may compute the radial velocity irrespective of the line
width. Example is shown in Fig. 5.

• One might well determine three parameters by scanning through all parameter
triples, and finding the best triple. However, graphical representation is difficult! A
better, and quicker way is to limit oneself to two–dimensional problems, and trying
various pairs of parameters.
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Figure 3: The cumulative likelihood distribution for the radial velocity with median
value and the borders of the central 90 percent confidence interval
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Figure 4: The two-dimensional distribution of the likelihood density shown as contour
lines. The thick contour depicts the region which contains 90 percent of the total

probability
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Figure 5: The marginal probability distribution density for the line width, computed
from Fig. 4. The median value and confidence borders are indicated

9 Tasks

Write a program that interprets the emission line profiles, verfify its proper functioning
with artificial data, and analyze the real spectra.

• taking several of the spectra, what can you say about the radial velocity of the
nebula?

• does the observed line width agree well with the theoretical expectations?

• what can you say about the validity of our assumption that the line profile is a
Gaussian?
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