Introduction to Radioastronomy: Instrumentation

Observatoire astronomique de Strasbourg

J.Köppen joachim.koppen@astro.unistra.fr

http://astro.u-strasbg.fr/~koppen/JKHome.html

Instrumentation

- Antenna
- Receiver
- Data processing

Dipoles (more than 2000)

Narrowband: Each dipole = half wavelength

Polarization: parallel to antenna

> Pulsars (1967, J.Bell-Burnell, 80 MHz)

A.Hewish

Horn antenna

Broadband, needs to be larger than wavelength

Polarization parall. to side

3K cosmic microwave background, the left-over from the BigBang

(1965, A.Penzias & R.Wilson, 4.1 GHz)

Now one does it on 150 GHz In Antarctica ...

Yagi-Uda antenna

Narrow-band, Width = half wavelength Length = anything

Polarization parall.to dipole

Helix antenna (Array)

Moderately broad-band, circumference = wavelength

Circularly polarized

1952, John Kraus, W8JK, 320 MHz

WW II: 'Würzburg Giant' 7.5 m

1956 Jodrell Bank 75m

Parabolic dishes

wideband, diam. > 10 λ surface acc. < λ /10 holes < λ /10

Sputniz

2007 ISU: ESA-Dresden 1.2 m

2009 ISU: ESA-Haystack 2.3 m

Angular resolution of an antenna

• Diffraction limit: to distinguish two point objects with an instrument of aperture diametre D at wavelength λ , they must be separated by an angle larger than

$$\sin \alpha > 1.22 \lambda/D$$

	diametre	wavelength r	esolution
Human eye	2 mm	500 nm	50 arcsec
ESA-Dresden	120 cm	3 cm	1.5 deg
Arecibo	300 m	21 cm	2 arcmin
Effelsberg	100 m	3 cm	1 arcmin

Half Power Beam Width

- is the angular width of the main lobe of the antenna beam – measured at half power
- Circular parabolic dish:

- HPBW $\approx 58^{\circ}$ / (D/ λ)

- **B**eamWidthbetweenFirstNulls $\approx 140^{\circ} / (D/\lambda)$
- Use this formula, if you know no details!

 Equivalent: Solid angle of the main beam (universal relation): Ω = λ² / A_{eff}
 (A_{eff} = efficiency * geometrical area)

Reciprocity

The antenna pattern is the same for receiving and for transmitting

Antenna (pattern) Gain

• As the main lobe's solid angle Ω is a fraction of the full sphere 4π , we define $G = 4\pi/\Omega$

- This quantity is thus a measure of the directivity of the antenna.
- usually given in decibels: dBi, i.e. with ref. to an isotropic antenna: 10 log(G)

Power received by antenna

- Flux from source: F [W/m²Hz]
 convenient: Jansky 1 Jy = 10⁻²⁶ W/m²Hz
- P = A_{eff} * F → large antennas are sensitive

Useful relations:

- $A_{eff}/\lambda^2 = \Omega = G/4\pi$
- HPBW = 180°/ \sqrt{G} = 180°/ $\sqrt{4\pi\Omega}$
- → high gain antennas are large and have narrow beams

Examples

	ESA-Dresden	ESA-Haystack
f [MHz] λ	11000 3 cm	1420 21 cm
Diameter [m]	1.2	2.3
Aeff [m²]	0.9	3.6
Gain [dBi]	+42	+30
HPBW [°]	1.4	5.7
Ω [sr]	0.00079	0.013
min.Flux [Jy]	50000	10000

