### Introduction to Radioastronomy: The radio telescopes at ISU



Observatoire astronomique de Strasbourg

J.Köppen joachim.koppen@astro.unistra.fr

http://astro.u-strasbg.fr/~koppen/JKHome.html

#### 2007 'ESA-Dresden' (1.2 m)



### 2009 'ESA-Haystack' (2.3 m)

Holidi

ř

#### 1956 Jodrell Bank 75m

### What we can observe



### ISU's two Radiotelescopes

|                                      | ESA-Dresden                                     | ESA-Haystack                                              |
|--------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| Frequency                            | 10 12 GHz (continuum)                           | 1.420 GHz (HI line)                                       |
| Wavelength                           | 3 cm                                            | 21 cm                                                     |
| Dish diameter                        | 1.2 m                                           | 2.3 m                                                     |
| HPBW<br>(ang.resolution)             | 1.5°                                            | 6°                                                        |
| Time for full solar scan             | 30 min                                          | 2 hrs (!)                                                 |
| Suitable objects                     | Sun, Moon, (TV satellites)                      | Sun, <b>Milky Way</b>                                     |
| We measure                           | absolute fluxes (give temperatures, Radiometer) | spectra, radial velocities of H gas clouds (Spectrometer) |
| Positional accuracy<br>and stability | ±1° (at best!)                                  | ±0.5°                                                     |
| operation                            | manual                                          | Manual & Batch                                            |

### The ESA-Dresden Telescope

- Frequency 10..12 GHz (wavelength 3 cm)
- Radiometer
- 1.2 m diameter satellite TV antenna

• Sun, Moon, (TV satellites)

<u>http://astro.u-strasbg.fr/~koppen/10GHz/</u>



### TV dish (€ 60)

SEPTIMO

### LNB (€ 5)

### SatFinder (€ 5)

15V dc power

Automatic Positioning, Timing, and Data Recording System (€0)

## On the roof

- 1.2m offset parabolic reflector
- Rotators for azimuth and elevation
- Low noise block (LNB):
  - Small horn antenna catches radio wave
  - Dipole senses radio wave, converts it into electrical signal
  - Preamplifier boosts signal (makes the background noise)
  - This 11 GHz signal is converted (mixed) to lower intermediate frequency (I.F., 1..2 GHz)
- Coaxial cable to observatory room



### Inside a SatTV LNB



## In the Observatory room

- Receiver measures strength of I.F. signal
  - in  $\mu$ V at its input terminal
  - one measurement every 2 sec
  - data are passed to computer for storage and display
- Rotator controller with computer interface
- Computer software provides graphical interface to user:
  - Controls: position, frequency, start/stop measuring ...
  - Display: current position, measured data, ...
  - predict Sun and Moon position



# How to measure the surface temperatures of Sun and Moon

- Observe the passage of the sun through the antenna beam (we utilize the Earth's rotation!):
  - Maximum gives radio flux from the sun
  - The profile gives the width of antenna beam, needed to determine the beam filling factor
- Flux from calibrator source = source of known temperature = the ground (290 K)
- Observe empty sky = determine background noise (mainly from the front end (LNB) of the receiver system)

### An example: the raw data



## Preview of analysis

reduce and calibrate the measured power

$$T_{Ant} = (P_{Sun} - P_{Sky}) / (P_{Cal} - P_{Sky}) * 290 \text{ K}$$

 the Sun does not fill the antenna beam: angular diameter D<sub>Sun</sub> = 0.5° < HPBW!</li>

$$T_{Surf} = T_{Ant}^* (HPBW/D_{Sun})^2$$

# The same thing for the Moon is somewhat more delicate





## Drift scans of the Sun

- A half-scan is easy at any time:
  - goto Calibrator, measure for 2 min
  - Sun now, Goto
  - find best position manually
  - (perhaps move a tiny bit to the West (right))
  - let the Sun drift across the beam
  - When signal becomes low and constant, you have the sky, then goto Calibrator (2 min)
- A full scan is best done near lunch-time

### However: the background ...

... is the sum of

- the receiver noise, which is constant at all positions
- and the sky noise, which increases with lower elevation angle as we look through a longer path through the atmosphere:



• Pbackgrd(EL) = PRX + Psky / sin(EL)

### How to do it

- Measure sky noise at several elevations (needs extra time in at 10°, 20°, 30°, 60°)
- Fit the data with the above relation, to get PRX



### ... and apply it

 $T_{Ant} = (P_{Sun} - P_{Backgrd}(EL)) / (P_{Cal} - P_{RX}) * 290 \text{ K}$ 

when we observe the sun, the background noise is from receiver **and** the sky at that elevation EL

but when we look at the calibrator, the background is only receiver noise!

## Simulation with the Trainer applet

http://astro.u-strasbg.fr/~koppen/10GHz/applets/trainer/

- In contrast to the real telescope, the simulator's positioning is perfect: use sun+15min to lay in wait for the sun
- Data are obtained by grabbing the text from the Output screen

## Reality: Bag of Tricks I

- The positioning system was never designed to point at such small sources ... but we can do it!
- → find the best position manually → we must be present during observations
- **Stop** measuring, receiver outputs signal more often! ... then **Resume**
- it's best done with the controller keys



## Bag of Tricks II

 Run 'RadioAstro' to establish port communication:



- Open ...
- The current position numbers should appear
- Close ...
- Exit the program
- Run 'ESA-Dresden' software
  Start



## Bag of Tricks III

- In principle, the electronics needs about 2 hours to warm up to equilibrium temperature
- During that time, there will be drifts in the displayed position (5° in Az) and the measured power levels (0.3 dB) ... don't worry!
- If you keep that in mind, you can observe without waiting <sup>(2)</sup>!