Introduction to Radioastronomy: Data Reduction and Analysis (I)

Observatoire astronomique de Strasbourg

J.Köppen joachim.koppen@astro.unistra.fr

http://astro.u-strasbg.fr/~koppen/JKHome.html

The ESA-Dresden Telescope

- Frequency 10..12 GHz (wavelength 3 cm)
- Radiometer (Flux calibrator = Holiday Inn)
- 1.2 m diameter satellite TV antenna

• Drift scan of the Sun or Moon

<u>http://astro.u-strasbg.fr/~koppen/10GHz/</u>

Determine surface temperatures of sun and moon

- Observe the passage of the sun through the antenna beam:
 - Maximum gives radio flux from the sun
 - The profile gives the width of antenna beam, needed to determine the beam filling factor
- Flux from calibrator source = source of known temperature = the ground (290 K)
- Observe empty sky = determine background noise (mainly from the front end (LNB) of the receiver system)

An example: the raw data

Sample data (text file)

```
UT1102081334mf_moon.txt - Bloc-notes
```

Fichier Edition Format Affichage ?

```
#Freq.= 12500 MHz, SAT-IF= 1900 MHz, High Band, Horizontal Polar.
#Start at: 08.02.2011 13:34:49 UT
   average_over 1 samples per position
      time[UT]
                 AZ EL <signal power[dBuV]>
         108.2
                0 44.6
         108
          108
         108
                  44.8
                0
          108
                  44 8
         108.2
         108.2
                0
                 44
                  44 8
          108
          108
                0
                  44.
          108
                  44.8
         108
         108
                0
                  44
                  44.6
                0
                  44.
                     b
         108
13:35:
         108.2
                0
                  44./
```

How to turn dB into power

- dB = 10 * log10(Signal power/Reference power)
- N.B. always give reference level:
 - dBm for 1mW, dBW for 1W,
 - dBµV for 1µV (means: 1µV at our receiver's 75 Ω input)
 - Antenna gain: dBd for dipole, dBi for isotropic

0 dB	+3 dB	+10 dB	-20 dB	+40 dB
1	2	10	0.01	10000

Data reduction (MS-Excel, small program, ...)

- Convert dB values into linear power values
- ... Subtract the average background power from ALL signals (the background noise is from the receiving system and always present)...
- ... divide by the calibration power:
- We get the relative signal power

10^(dB_signal/10) – 10^(dB_backgrd/10)

RP =

10^{(dB_calibrator/10) – 10^(dB_backgrd/10)}

From the reduced data ...

... we get this information

- The peak power from the sun is 3.5 times that of the calibrator
- → the solar « antenna temperature » thus is
 3.5 * 290 K
- The sun took about 7 minutes to cross the antenna beam (measured at half power)
- The rotation of the Earth takes the Sun across the sky in 360°/24 hrs = 1°/4 min
- \rightarrow the antenna's HPBW: about 7/4 = 1.7°

Now the interpretation

- The sun has a diameter of 0.5°, thus much smaller than the antenna beam
- Solar radiation fills the antenna beam with only a fraction of (0.5°/1.7°)² = 1/12
- The calibrator of T=290 K fills the entire beam, so if one wants to get a solar signal of 3.5 times the calibrator, the solar surface temperature must be 12 times higher than the antenna temperature:

The temperature of the solar surface is:

290 K * 3.5 * 12 = 12000 K

Ground calibration

Measured: peak and width

With DresdenViewer.java

That's fine, but ...

- The calibration before and after the observation is different! What would be if it had changed linearly between these times?
- also: the sky background may change ...

 … hence, a quick, standard-type data reduction may not be sufficient!

But that's NOT the photosphere

- The outer layers of the sun (corona and chromosphere) are not fully transparent to radio waves at 10 GHz
- At that frequency we can look only down into the Transition Layer, which is between corona and chromosphere. Here, the temperature rises steeply from the 5000 K above the photosphere to the millions K in the corona.

The atmosphere of the Sun:

Some finer points

- Depending on their declination δ (the distance from the celestial equator) the sun and the moon move across the sky with a speed of 0.25°/min * cos δ
- Their angular diameters are not constant (can be obtained from software)
- These numbers you get from <u>http://astro.u-strasbg.fr/~koppen/orrery/</u>
- The antenna pattern may not be circular, that is the HPBW may vary with the direction how the sun moves across the beam. Only at lunchtime it travels horizontally

http://astro.u-strasbg.fr/~koppen/orrery/

rmovernent		0.183 /////			Backward	Forwa	ard		1	Day(s)	
t in Elevation	levation 0.143 "/min						A			Zoom +	
				-	Initial		-	<-	Centre	->	
		next Page						V			Zoom -
figuration	Celestia	I bodies	Utilities	Track the body				Show data of the body			

Measured antenna pattern (contour spacing: 1dB)

