#### Introduction to Radioastronomy: Data Reduction and Analysis (II)



Observatoire astronomique de Strasbourg

J.Köppen joachim.koppen@astro.unistra.fr

http://astro.u-strasbg.fr/~koppen/JKHome.html

# The ESA-Haystack Telescope

- Frequency 1420 MHz (Wavelength 21 cm)
- Spectroscopy
- Radiometer (flux calibrator = Library wall)
- 2.3 m diameter parabolic reflector

- Rotation curve of the Milky Way
- (Solar temperature)

# We live here in the Milky Way which \rotates about its centre



The emission from an object here will be seen by us 'blue-shifted', i.e. coming towards us.

 This object will be seen by us 'red-shifted', i.e. moving away from us.

http://astro/u-strasbg.fr/~koppen/Haystack/applets/rotation/

## What we observe at G90



# We live here in the Milky Way which rotates about its centre



The emission from an object here will be seen by us 'blue-shifted', i.e. coming towards us.

This object will be seen by us 'red-shifted', i.e. moving away from us.

# Oort's formula

Assume: all stars move on circular orbits



$$V_{RAD}(\ell) = (V_{ROT}(R) * R_{\odot}/R - V_{\odot}) \sin \ell$$



# A special case



#### At longitudes I < 90° we observe a **maximum radial velocity** ...

... from the matter that we seemoving radially away from us ...... which is the radius to which ourline-of-sight is a tangent!



# What we had done

- Spectra at various positions in the inner Galactic
  Plane (G0 = SgrA ... G90)
  - Frequency centre and span chosen to cover the entire feature
  - Observed until the (red) averaged spectrum looked smooth and pretty noise-free
- Now we have all spectra in one data file ...

# ... and we use SRTanalyser.java

| SRTanalyser           |             |             |            |        |                   |                         |            |            |        |                      |                 | _ 🗆 ×    |
|-----------------------|-------------|-------------|------------|--------|-------------------|-------------------------|------------|------------|--------|----------------------|-----------------|----------|
| G0G120_1.txt          |             |             |            |        |                   |                         |            |            |        |                      |                 |          |
| Displays              | Baselin     | e C         | pen        | Reopen | Add               | Pos-V                   | nap Pos    | s-dist.map | XY map | Pwr(pos)             | Spectrum        | X-Y      |
| Longitudes            |             | 0           |            | 90     |                   |                         | dra        | ig & zoom  |        |                      | unZoom          |          |
| vrad                  |             | -150        |            | 150    |                   | <b>x =</b><br>radial ve | locity (km | (s]        | y =    |                      | z =<br>latit    | tude = U |
| <<                    | e tutta ana | 30.0        |            |        | >>                |                         |            |            |        |                      |                 |          |
|                       |             |             |            |        |                   | 100-                    |            |            |        |                      |                 |          |
| writ                  | eTXT        |             |            | write  | FITS              |                         |            |            |        |                      |                 |          |
| Plots: mean =         |             | disp        | . =        | FW     | 'HM =             |                         |            |            |        |                      |                 |          |
| Map colour coding     |             |             | Rainbow    |        | •                 | ]                       |            |            |        |                      |                 |          |
|                       |             | limits      |            |        | autorange         | 0                       |            |            |        |                      |                 |          |
| maximum               |             | 122.3235    |            | 0.0    |                   |                         |            |            |        |                      |                 |          |
| minimum               |             | 0           |            | 0.0    |                   |                         |            |            |        |                      |                 |          |
| bins in xy-map        | 300         |             | no pixel c | orr.   | distance corr.: 0 |                         |            |            |        |                      |                 |          |
| rotation curve: vsun  | 210         |             | dvdr       |        | 0                 | -100-                   |            |            |        |                      |                 |          |
| overplot vrot         | 200         |             | 250        |        | 10                |                         |            |            |        |                      |                 |          |
|                       |             |             |            |        | 0.117             | 0                       | 10         | 20 3       | 30 40  | 50 6<br>galactic lor | 0 70<br>ngitude | 80 90    |
| Analyse Galactic data | a irom E    | SA-Haystack |            |        | © Ј.КОРРЕ         | en Strasp               | Jurg 201   | J          |        |                      |                 |          |

# ... display the spectrum for G30



### The data reduction

• How this is done?

• Let us look at it step-by-step

• You can write your own program in Basic, C, FORTRAN, Java, Python, ...

# Some generalities

- For galactic studies we won't do any flux calibrations
- We observe spectra = the powers at a range of frequencies (i.e. radial velocities)
- We take a number of spectra at each position
  → we'll use the average spectrum
- My slang: 'spectrum' = all the 202.. points of data ... i.e. do everything for <u>all</u> those points

# Structure of the data file

(1) When we move to another position, this is recorded as a comment \* cmdfil: line 198 : galactic 65 0 (other comments are marked with an asterisk ...)

(2) Measurements are a number of data lines: At each moment of time, the entire spectrum is recorded as

02:15:10 157.5 65.1 0 0 -35.78 1419.61 0.00781250 5 202 20.0 25.0 44.0 .... Time [UT]position...VLSR $\leftarrow$  frequency grid info $\rightarrow$  $\leftarrow$  spectrum...AZEL...[km/s]freq1fstep..nfp1p2p3...[MHz]Number of for all frequencies, frequencies starting with the first one (freq1) and with (3) For each position, we average for each frequency the step fstep: the powers from this position, to get the average spectrum.

f(k) = freq1 + k\*fstep

# Step1: make the frequency grid

| E               | CARTYPE  | - × v   | <i>f</i> ≈ =L3+3 | SH\$9 |               |          |          |          |          |
|-----------------|----------|---------|------------------|-------|---------------|----------|----------|----------|----------|
|                 | F        | G       | Н                |       | J             | K        | L        | М        | N        |
| 1               | galactic | 30      | 0                |       |               |          |          |          |          |
| 2               |          |         |                  |       |               |          |          |          | -        |
| First frequency |          | /       | treq             |       | $\rightarrow$ | 1419.43  | 1419.438 | 3+\$H\$9 | 1419.453 |
| 4               |          |         | vrad             |       |               | 216.0939 | 214.445  | 212.7961 | 211.1472 |
| -5              |          |         | power            |       |               | 16.33333 | 20.375   | 35.79167 | 72.125   |
| 8               |          | X       |                  |       |               |          |          |          |          |
| 9               | -10.1    | 1419.43 | 0.007813         | 6     | 248           | 19       | 23       | 42       | 85       |
| 10              | -10.12   | 1419.43 | 0.007813         | 6     | 248           | 19       | 24       | 42       | 83       |
| 11              | -10.15   | 1419.43 | 0.007813         | 6     | 248           | 16       | 20       | 36       | 72       |

Frequency step

# Step2: make the velocity grid

| ECARTYPE |          | - × 🤉   | → ★ → ★ =-(K3/1420.406-1)*299790-\$F\$9 |   |     |           |          |          |  |  |
|----------|----------|---------|-----------------------------------------|---|-----|-----------|----------|----------|--|--|
|          | F        | G       | H                                       |   | J   | K         | L        | М        |  |  |
| 1        | galactic | 30      | Q                                       |   |     |           |          |          |  |  |
| 2        |          |         |                                         |   |     |           |          |          |  |  |
| 3        |          |         | freq                                    |   |     | 1419.43   | 1419.438 | 1419.446 |  |  |
| 4        |          |         | vrad                                    |   |     | =-(K3/142 | 214.445  | 212.7961 |  |  |
| 5        |          |         | power                                   |   |     | 16.33333  | 20.375   | 35.79167 |  |  |
| 8        |          |         |                                         |   |     |           |          |          |  |  |
| 9        | -10.1    | 1419.43 | 0.007813                                | 6 | 248 | 19        | 23       | 42       |  |  |
| 10       | 12       | 1419.43 | 0.007813                                | 6 | 248 | 19        | 24       | 42       |  |  |
| 11       | -10.15   | 1419.43 | 0.007813                                | 6 | 248 | 16        | 20       | 36       |  |  |
| 12       | -10.1    | 1419.43 | 0.007813                                | 6 | 248 | 17        | 21       | 36       |  |  |

VLSR correction

### Step3: get average powers

| ECARTYPE |          | - X J & =MOYENNE(K9:K32) |          |   |     |          |          |          |
|----------|----------|--------------------------|----------|---|-----|----------|----------|----------|
|          | F        | G                        | Н        |   | J   | K        | L        | М        |
| 1        | galactic | 30                       | 0        |   |     |          |          |          |
| 2        |          |                          |          |   |     |          |          |          |
| 3        |          |                          | freq     |   |     | 1419.43  | 1419.438 | 1419.446 |
| 4        |          |                          | vrad     |   |     | 216.0939 | 214.445  | 212.7961 |
| 5        |          |                          | power    |   |     | =MOYEN   | 20.375   | 35.79167 |
| 8        |          |                          |          |   |     |          |          |          |
| 9        | -10.1    | 1419.43                  | 0.007813 | 6 | 248 | 19       | 23       | 42       |
| 10       | -10.12   | 1419.43                  | 0.007813 | 6 | 248 | 19       | 24       | 42       |
| 11       | -10.15   | 1419.43                  | 0.007813 | 6 | 248 | 16       | 20       | 36       |
| 12       | -10-1    | 1/19//3                  | 0.007813 | 6 | 248 | 17       | 21       | 36       |
| 13       | -10.1    |                          |          |   |     |          |          |          |
| 14       | -10.1    | 1                        | 050 -    |   |     |          |          |          |
| 4 C      | 10       |                          | 000      |   |     |          |          |          |

**MOYENNE = AVERAGE** 

# Step 4: Plot the average spectrum



#### Step 5: Subtract background ('baseline')



# In Excel it looks like this



power [cts]



# Analysis



#### (2) apply Oort's formula

at  $R = R_{\odot} \sin \ell$  we have rotation speed

 $v_{\text{ROT}}(\mathsf{R}) = v_{\text{RAD},\text{max}}(\ell) + v_{\odot} \sin \ell$ 

# Collect the data from longitudes

| ECARTYPE |          |   |          |              |            |            |  |  |  |  |
|----------|----------|---|----------|--------------|------------|------------|--|--|--|--|
|          | A        |   | В        | С            | D          | E          |  |  |  |  |
| 1        |          |   |          |              |            |            |  |  |  |  |
| 2        |          |   |          |              |            |            |  |  |  |  |
| 3        | gal.long |   | vrad_max | Rmax         | v0 * sinl  | vrot       |  |  |  |  |
| 4        | 1        | 0 | 48.5     | 1.47600951   | 38.2025991 | 86.7025991 |  |  |  |  |
| 5        | 1        | 5 | 70       | 2.19996188   | 56.9401899 | 126.94019  |  |  |  |  |
| 6        | 2        | 0 | 100      | =B\$24*SIN(R | 75.2444315 | 175.244432 |  |  |  |  |
| 7        | 2        | 5 | 122      | 3.59225522   | 92.9760176 | 214.976018 |  |  |  |  |
| 8        | 3        | 0 | 118      | 4.25         | 110        | 228        |  |  |  |  |
| 9        | 3        | 5 | 109      | 4.87539971   | 126.186816 | 235.186816 |  |  |  |  |
| 10       | 4        | 0 | 94       | 5.46369468   | 141.413274 | 235.413274 |  |  |  |  |
| 11       | 4        | 5 | 80       | 6.01040764   | 155.563492 | 235.563492 |  |  |  |  |
| 12       | 5        | 0 | 73       | 6.51137777   | 168.529777 | 241.529777 |  |  |  |  |
| 13       | 5        | 5 | 65       | 6.96279238   | 180.21345  | 245.21345  |  |  |  |  |
| 14       | 6        | 0 | 51.7     | 7.36121593   | 190.525589 | 242.225589 |  |  |  |  |
| 15       | 6        | 5 | 44       | 7.70361619   | 199.387713 | 243.387713 |  |  |  |  |
| 16       | 7        | 0 | 33       | 7.98738728   | 206.732377 | 239.732377 |  |  |  |  |
| 17       | 7        | 5 | 24       | 8.21036952   | 212.503682 | 236.503682 |  |  |  |  |
| 18       | 8        | 0 | 23       | 8.3708659    | 216.657706 | 239.657706 |  |  |  |  |
| 19       | 8        | 5 | 20       | 8.46765493   | 219.162834 | 239.162834 |  |  |  |  |
| 20       | 9        | 0 | 17       | 8.5          | 220        | 237        |  |  |  |  |
| 21       |          |   |          |              |            |            |  |  |  |  |
| 22       |          |   |          |              |            |            |  |  |  |  |
| 23       |          |   |          |              |            |            |  |  |  |  |
| 24       | R0       |   | 8.5      | kpc          |            |            |  |  |  |  |
| 25       | vsun     |   | 220      | km/s         |            |            |  |  |  |  |
| 26       |          |   |          |              |            |            |  |  |  |  |
| 27       |          |   |          |              |            |            |  |  |  |  |

# What you might get ...

galactic rotation curve (24 march 2010)



# ...flies in the face of physics





# Solar temperature I

- We do not need the spectral details
- Just add (SUM or AVERAGE) the fluxes of all frequencies in a spectrum ...
- ... but do NOT use the first 9 and the last 9 frequencies: the border regions!



#### Solar temperature II



#### Solar temperature III

- The sun has a diameter of 0.5°, thus much smaller than the antenna beam (6°)
- Solar radiation fills the antenna beam with only a fraction of (0.5°/6°)<sup>2</sup> = 1/144
- The calibrator of T=290 K fills the entire beam, so if one wants to get a solar signal of 2.4 times the calibrator, the solar surface temperature must be 144 times higher than the antenna temperature:



# Solar temperature IV



## Solar temperature V

