Evolution of Galaxies: Abundances from the gas

Observatoire astronomique de Strasbourg

J.Köppen joachim.koppen@astro.unistra.fr

http://astro.u-strasbg.fr/~koppen/JKHome.html

- Optical (IR, UV) lines = atomic transitions (E ~ eV)
 - H α 6563, [O II] 3727, [O III] 5007, CIV 1550, [O III] 88 μm
 - Indicates warm, ionized gas (10⁴ K)
 - HII regions, PN, SNR, AGN

Theoretical PN spectrum

Ì

Spectra of quasars

at different redshifts (de-redshifted)

- Radio lines = atomic fine structure, molecule rotation (E ~ meV)
 - Warm ionized gas: HII, HeII, CII ... recombination
 - Neutral gas: HI 21 cm
 - Molecular gas: ¹²CO 2.6mm, ¹³CO, NH₃, H₂CO, H₂O, ...

X-ray lines = inner shell atomic (E ~ keV)

γ-ray lines = nuclear transitions (E ~ MeV)
 – (hot) gas: ¹²C,¹⁴N,¹⁶O,⁵⁶Fe, ...

γ -spectrum expected from Galactic Centre

Absorption lines

- Optical (IR, UV) absorption lines
 - Cool ... hot gas: NI, CII, CIV, SiIV, OVI ...
 - ISM, IGM (quasar abs.lines)

IS abs.lines: PN NGC 6826

INES SWP20447HL.FITS: NGC 6826, HIGH Dispersion, LARGE Aperture.

PN NGC 6826 UV echelle spectrum (IUE)

HI Ly α (Geocorona, ISM abs) NI (ISM abs) CIV (PCyg + ISM abs) [CIII (nebular emission)

CR hits (bright single pixels)

Dust features

- Emission/absorption

. . .

- Warm clouds + circumstellar shells
- Silicates, PolyAromaticHydrocarbons(=C-rich)
- Features depend on grain size+structure → only rough estimates of composition

IR spectrum (Gal.centre)

IR spectrum (Gal.centre)

ity [Jy]

Lutz 1996

Abundances: notation

- Spectroscopy: by number density
 - A(O) = O/H = 12 + log(O/H) = 12 + log(n(O)/n(H))

- Arbitrary normalization: A(H) = 12

 $- [O/H] = log(O/H) - log(O/H)_{sun}$

Stellar & galactic evolution: mass fraction
 -X + Y + Z = 1 means: H + He + 'metals'

Solar composition (Asplund 2009)

	by number (old)		by mass (old)	
Н	12.00		0.737	(0.706)
He	10.93	(11.00)	0.251	(0.275)
С	8.39	(8.76)	0.0022	
N	7.78	(8.10)	0.00062	2
0	8.66	(8.91)	0.0054	
Fe	7.45		0.0116	
Z = metals			0.012	(0.02)

Lines and the 2-level atom

number density of atoms in state 2 [cm $^{-3}$]Spontaneous emissionrate= $n_2 A_{21}$ Absorption $n_1 B_{12} J_{12}$ Stimulated Emission $n_2 B_{21} J_{12}$ [s $^{-1} cm {}^{-3}$]

Relation between Einstein coefficients:

 $g_2 B_{21} = g_1 B_{12}$ $g = statistical weight of level; H : <math>g_n = 2 n^2$

 $2 h v^{3}/c^{2} * B_{21} = A_{21}$ $A_{21} = 1/(\text{lifetime of excited state}) \sim \begin{bmatrix} 10^{8} & 1/s & \text{dipole-permitted line} \\ 1 & 1/s & \text{'forbidden' line} \end{bmatrix}$

Line optical depth?

Optical depth at line centre

$$\tau = L \frac{hv_{12}}{4\pi} \varphi_v(v_{12}) (n_1 B_{12} - n_2 B_{21})$$

abs.coeff.= density*cross section

- -L = path length
- $-\phi = \text{line profile} \qquad \int \phi \, dv = 1$
- NB. Oscillator strength f:

$$\frac{\pi \ e^2}{mc} f = \frac{h v_{12}}{4\pi} \ B_{12}$$

Line optical depth?

- Line width b: $\varphi_v(v_{12}) \approx \frac{1}{h}$
- ISM (low density, far from radiation sources): $n_2 \ll n_1$; neglect stim.emission
- ground state number density

$$n_1 = \frac{n_1}{n_{ion}} \times \frac{n_{ion}}{n_{elem}} \times \frac{n_{elem}}{n_H} \times n_H$$

excitation=1 ionization? abundance ε

Line optical depth?

observe dominant ion of the element ($N_{H} = n_{H}*L = hydrogen$ column density):

$$\tau_{12} = N_H \times \varepsilon \times \frac{\lambda^3}{8\pi b} \times \frac{g_2}{g_1} \times A_{21}$$

→ For ISM gas in clouds and nebulae:

- H I Ly α (permitted, ground state) THICK
- H I H α , P α ... (permitted, excited state) THIN
- Metals (forbidden lines, ground state) THIN (some exceptions HeI 3888, CIV 1550 ...)

Advantages of optically thin lines

- Measured flux is sum of all contributions from emitting volume: $f_{obs} = \frac{1}{4\pi d^2} \int 4\pi j \, dV$
- emissivity integrated over entire line: $j = n_2 A_{21} \int \frac{hv}{4\pi} \varphi_v(v) dv = \frac{hv}{4\pi} n_2 A_{21}$

$$f_{obs} \propto jV \propto n_2V \propto \varepsilon n_HV$$

- Linear dependence on abundance
- Independent of line shape
- Independent of exact source geometry

Recombination lines (H, He,

cascade of lines after recombination to higher level: optical (H α) ... radio (H109 α)

solution of cascade: emissivity $j = \frac{hv}{4\pi} n_{+} n_{e} \alpha_{eff}$ effective recomb.coefficient $\alpha_{eff} \propto T_{e}^{-0.6} \sim 10^{-13} \ cm^{3}/s$

recomb.lines of metals are very weak (< 0.001) due to their low abundance

Collisionally excited lines

Steady state $n_1 C_{12} = n_2 (C_{21} + A_{21})$ Low density limit $C_{21} \ll A_{21}$ gives $j \propto n_2 A_{21} = n_1 C_{21} \propto \frac{n_1 n_e}{\sqrt{T_e}} \exp(-\frac{E_{12}}{kT})$ Sensitive to electron temperature

Most lines are 'forbidden': [OII] 3727, [OIII] 5007, [ArIII] 7135 ... Also permitted resonance lines CIV 1550, NV 1240, ...

Theoretical PN spectrum

Analysis: Plasma diagnostics

- Assume: nebula is isothermal & homogeneous
- Electron temperature from diagnostic line ratios: [OIII] 5007/4363, [NII] 6583/5755, ... ratio ~300 !!!
- Electron density from line ratios:
 [SII] 6731/6717, ... lines are weak and closeby
- Compute line emissivities, get ionic abundances [OIII]/H $\beta \rightarrow$ O⁺/ H⁺
- Ionization correction (empirical factors ICF):
 O/H = (O⁺/H⁺ + O⁺⁺/H⁺) * (He/He⁺)
 N/H = (O/H) (N⁺/O⁺)

Electron temperature diagnostic

Electron density diagnostic

N/O ionization correction

http://astro.u-strasbg.fr/~koppen/Plasma.html

clear data	enter	test data tai	ke Synth. data	Plasma analysis	Ionic fractions	
Wavelength	C)bserved	Corrected	Analyse Obs.	Synthesize	
[O II] 3728	10		11.87			
[Ne III] 3869	0.0		0.0	Extinction c	0.266	
[O III] 4363	4		4.25	Temp. T(O III)	9830.7	
He II 4686	1		1.02	Temp. T(N II)	8564.0	
H I 4861	100		100.0	Density n(SII)	575.78	
[O III] 5007	700		685.99		-	
[N II] 5755	0.3		0.26	Elemental abundances	log(H) = 12	
He I 5876	16		13.78	He/H	10.998	
[S III] 6312	0.0	No SIII line → inaccurate			8.304	
H16563	350		287.35	O/H	8.44	
[N II] 6584	30		24.59	Ne/H	0	
[S II] 6717	2		1.62	S/H	7.413	
[S II] 6731	2		1.62	Ar/H	0	
[Ar III] 7135	0.0	0.0 No ArIII line \rightarrow no Ar/H		set Solar abundances		
[O II] 7325	1		0.77			

Analysis methods (II)

- Model fitting: compute ionization and excitation due to all known processes:
 - HII, PN: photoionization
 - SNR: collisional ionization (shock)
- 'Strong Line Methods': diagnostic relations obtained from model grids (Pagel, ...)
- Lines not optically thin: radiative transfer, depends on source geometry, velocity field
 → derive correction terms for opt.thin case

SNR spectrum

Dopita et al. 1980

Model of a shock

Cox 1972

Summary: emission lines

- Problems:
 - Diagnostic lines are faint
 - No good ICF
 - Temperature fluctuations → overestimate average T
 → underestimate abundance by 0.1 dex
- Accuracy
 - Atomic data: ±5...10 %
 - Single object, very good spectrum (plasma/model)
 - He/H ±0.02 dex = 5%
 - O/H ±0.1 dex
 - Other elements: ±0.3 .. 0.5 dex
 - External galactic HII region: O/H ~< ±0.2 dex

Abundances (from HII regions)

- MWG@8.5 kpc O/H = 8.68±0.05
 Sun: 8.66 (old: 8.91)
- Spirals: characteristic O/H increases with mass and morphological type
- SB = S
- LSBs 1/3 Zsun
- Cluster gals: perhaps higher Z
- Bulge PN (MWG, M31): O/H lower than expected from stellar [Fe/H] $O_B=O_D$
Abundance and Gal.parameter

Sc Sb

Henry+Worthey 1999

O-abundance at effective radius in spirals

Henry+Worthey 1999

Abundance ratios

- O Ne S Ar : go in lockstep, as expected from their synthesis in massive stars
- C/O and N/O cf. chemical evolution (later)

O-Ne-S-Ar go in lockstep

Abundance profiles

- MWG: gradient O/H -0.06 ± 0.01 dex/kpc
 - no genuine scatter (± 0.2 dex noise)
 - flattens beyond 10 kpc (HII, PN) ...
- Other spirals: M31, M33, M81, M83, M101 ... http://ned.ipac.caltech.edu/level5/Ewald/Abundances/frames.html
- SB: no gradient (strong bar → radial mixing)
- LSB: no gradient
- Shape of profile: expon., power, flattening ...
- Vertical 'gradient': MWG as expected from stellar $\sigma\text{-age}$ relation

Abundance gradient MWG: HII

Henry+Worthey 1999

HII and SNR give same gradient

Gradient vs. Gal.parameter ?

Nothing!

Henry+Worthey 1999

Gradient flattening

Bresolin 2012

Absorption lines

Equivalent width

I₀

I₀

I

λ

I 😶

λ₀

$$W_{\lambda} = 2 \int \frac{I_0 - I(\Delta)}{I_0} d\Delta \lambda$$

?

Compute $I(\Delta \lambda)$ from absorbing column $I(\Delta \lambda) = I_0 \exp(-\tau(\Delta \lambda))$ Monochromatic optical depth $\tau(\Delta \lambda) = \int \kappa(\Delta \lambda) dl$

Absorption coefficient

$$\kappa(\Delta\lambda) = \frac{h\nu}{4\pi} \varphi(\Delta\lambda) (n_1 B_{12} - n_2 B_{21})$$

Uniform cloud $(\tau_0 \propto n_1 l = N_1 \text{ column density})$ $\tau(\Delta \lambda) = \tau_0 b \quad \varphi(\Delta \lambda)$

Absorption lines

All together

$$W_{\lambda} = 2 \int_{0}^{\infty} (1 - \exp(-\tau (\Delta \lambda)) \ d\Delta \lambda$$

With a Gaussian line profile (broadening by thermal and/or microscale motions) of width $b = \frac{\lambda_0}{c} \sqrt{\frac{RT}{\mu}} + \xi^2$ $\varphi(\Delta\lambda) = \frac{1}{b\sqrt{2\pi}} \exp(-\frac{1}{2}(\Delta\lambda/b)^2)$

One gets

$$W_{\lambda} = 2b \int_0^{\infty} (1 - \exp(-\frac{\tau_0}{\sqrt{2\pi}} \exp(-\frac{1}{2}(\Delta\lambda/b)^2))) d(\Delta\lambda/b)$$

Note that optical depth at line centre $\tau_0 \propto f N_1 / b$ depends on line strength, lower state column density and line width.

W_{λ} as function of τ_0 is the **Curve of Growth** or **Saturation Curve**

Curve of growth

JPL/IPAC

COG: limiting cases

Weak lines: linear part

optically thin:
$$1 - \exp(-\tau) \approx \tau$$
 gives
 $W_{\lambda} \approx \frac{2\tau_0}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{x^2}{2}} dx = \tau_0$

- Saturation $W_{\lambda} \propto b \sqrt{\ln(fN/b)}$
- Damping wings $\varphi(\Delta \lambda) \rightarrow \frac{1}{\gamma^2 + \Delta \lambda^2}$ (Lorentz-profile) composite profile Voigt function H(a,v) = Gauss*Lorentz

gives:
$$W_{\lambda} \rightarrow b \sqrt{\tau_0 \frac{\gamma}{b}}$$

Absorption line analysis

- Get **b** from hi-res.profiles of weak lines
- Get ionic column densities via COG

Ionization correction

- Sum up all ions
- Assume that visible ion is dominant one
- Models
- Problems:
 - Ionization correction
 - Saturation of strong lines
- Accuracy: <0.3 dex ... 1 dex ...

Model: ionization stratification

Absorption lines: results

- MWG: ISM of thin disk
 - Same metallicity as HII regions = present gas
 - But depletion onto dust grains (Si, Fe, ...)
 - Ionization: neutral NI ... Si IV, CIV, OVI
 - → neutral clouds embedded in hot (10⁶ K) low density 'coronal' gas
- MWG halo:
 - Low and high I.P.; metallicity~disk; brought up by galactic fountains (← SN ← SF)

Lyman lines of H and D

Ly ε

Ly δ

seen towards yCas

Ly γ

Ly β

Vidal-Majar 1977

COG of interstellar lines

ISM: depletion of gas phase

Spitzer 1975

Multi-phase ISM

Absorption lines: results

- LMC+SMC: also coronal gas Si IV, CIV
- Quasar absorption lines = gas between redshifted quasar and us:
 - Lyman forest
 - Damped Ly- α system (DLA) = galactic disks?
 - Lyman Limit Systems = Lyman edge 911Å
 - Metallicity 0.01 ... 1 Zsun

still uncertain, but nothing outrageously different

Quasar absorption lines

Metallicity-Redshift evolution?

Pettini 1999

DLA: Abundance pattern

11 DLAs quite uniform

dust depletion effects Ionization differences

Dessauges-Zavadsky 2006

back to Emission Lines

'BPT Diagrams': e.g. [OIII]/H β vs. [NII]/H α

Baldwin, Phillips & Terlevich 1981

Following slides adapted from R.Cid-Fernandez

Veilleux & Osterbrock 1987

Veron-Cetty & Veron 2000

Kewley et al. 2001

Apache Point Observatory

Where in the world is the Apache Point Observatory???

2.5 m survey telescope

Gas physics behind the diagram

NGC 6826 CIV

INES SWP20447HL.FITS: NGC 6826, HIGH Dispersion, LARGE Aperture.

