Evolution of Galaxies: Abundances from stars

Observatoire astronomique de Strasbourg

J.Köppen joachim.koppen@astro.unistra.fr

http://astro.u-strasbg.fr/~koppen/JKHome.html

CCD image with spectra of several objects

spectrograph slit

4000 5000 6000 7000 A

CCD image with spectra of several objects

To get a stellar spectrum ...

log(normalized flux [erg/cm2/s/Å])

... the raw data needs to be processed

Arbitary flux

Spectrum of the dark sky

Stellar spectra ... spectral class

O: Hell lines **B: Hel lines** A: HI lines strongest F: H+K,Fell G: H+K,Fel,Fell K: H+K strongest M: TiO bands

Spectral class & temperature

30 A

Sun G2 V

Procyon αCMi F5 IV-V

Lines form in stellar atmosphere

 $\tau = 0$

• •

Optical depth of layer below the 'surface' $\tau(\Delta\lambda) = \int_0^t \kappa(t, \Delta\lambda) dt$

N.B.: strictly speaking, $\tau = 0$ is at our eye!

Source function S

describes emission from layer τ ... $\tau {+} \Delta \tau$

$$S(\lambda, \tau) = \frac{j(\lambda, \tau)}{\kappa(\lambda, \tau)}$$

Approximation of Local Thermodynamic Equilibrium

$$= B(\lambda, T(\tau))$$
 T-stratification

 $= \frac{n_2 A_{21}}{n_1 B_{12} - n_2 B_{21}} = B(\lambda, T_{12}(\tau))$

In general (NLTE)

 $n_1, n_2 = f(\tau)$ stratification of level populations Excitation temperature:

$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp(-\frac{E_{12}}{kT_{12}})$$

Temperature decrease upwards

Approximatively: $I(\Delta\lambda) \approx S(\tau(\Delta\lambda) \approx 1)$ Line centre: has higher absorption \rightarrow $\tau=1$ occurs higher up in atmosphere \rightarrow lower emission (lower T) \rightarrow line centre darker ('absorption')

Equivalent width increases with column density in a **Curve of Growth**

Theoretical COGs

Empirical COG of the Sun (Fel)

Stellar spectrum analysis

- COG method (classic):
 - Take empirical COG from similar star or from a model
 - By matching the COGs to observations determine the column densities of all ions and elements
 - Use thermodynamic laws (Boltzmann, Saha) to determine effective temperature and elemental abundances

Stellar spectrum analysis

- Model atmosphere approach
 - Get Teff from photometric colours, continuum slope
 - Get log(g) from fitting wings of strong lines (high density → damping → wings)
 - Set elemental abundances

Adjust T, log g, abundances

- Compute model atmosphere (ATLAS: LTE + planar)
 which gives stratification of n, T, ionisation ...
- Use line formation code to compute
 - line equivalent widths, profiles ...
 - Synthetic spectrum
- compare with observations

Fine tuning of abundances

Constraints by all observed data determine model (T,g)

Stellar spectrum analysis

Fitting requirement: for a consistent model the same abundances must be obtained by all lines of

- the same ion
- the same element

independent of the equivalent width, the oscillator strength f, the energy of the lower level, ...

Problems & Difficulties

- Saturation: better observe weak lines (needs high S/N!)
- uncertain f-values
- NLTE is necessary:
 - Hot stars T>25000 K
 - Lines that form high in atmosphere (low density): OI lines in A*
- Rotation: non-spherical stars, Teff varies over surface
- Emission components: circumstellar (HII, PN), chromosphere, corona (UV, Xray)

Solar Xray and UV spectrum

Problems & Difficulties

- Extended atmospheres
- Microturbulence ξ remains a fudge parameter!
- Chemically inhomogeneous atmospheres, starspots, …

Accuracy: better than 0.3 dex is possible

NB: **differential analysis** of similar stellar spectra is possible, and detects small differences

Spectral resolution (~5000 A)

Methods for more distant stars

- Spectroscopy needs good S/N → limited range
- Integrated spectra of entire stellar population
 - + no angular resolution needed
 - -- modeling of population required
- Photometric methods (single stars / stellar pop.)

principle: elements like Fe, Ni, Ti, V, ... have complex level diagrams with many lines in optical and UV.

Higher metallicity \rightarrow more absorption \rightarrow depression of continuum \rightarrow detectable in intermediate and narrowband photometry

How to get parameters

- Effective temperature: from continuum slope, Balmer jump (hot stars), Balmer line strength in FG*
- log g or L: Balmer lines (hot stars), Balmer jump&molecule features in FGK*
- [Fe/H]: Johnson λ/Δλ~5, Geneva 10, Strömgren 40, DDO (Toronto), Lick Δλ=8A

Slope (=colour) of the Spectral Energy Distribution (SED) indicates temperature

Johnson UBVRI

Strömgren photometry

Lick narrowband photometry

Relative Flux

Results: MWG, spectroscopy

- Universal abundance pattern
 - He
 - CNO
 - O, Ne, Mg, Si, S, Ar, Ca, Ti, Cr, Fe
 - Ti,Fe,Ni,Co
 - beyond Fe: r+s elements (Eu)
- [metals/Fe] < ±0.5 dex

Universal 'cosmic' abundance

Universal 'cosmic' abundance

Relations between elements

- In lockstep with Fe: C, Na, Sc,V,Cr, Mn, Co, Ni, Zn
- α-process elements: O,Ne,Mg,Si,S,Ar,Ca,Ti
 halo: high [M/Fe]
 disk: [M/Fe] decreases with [Fe/H]
- other elements: N, Eu ...

Close scaling with Iron

Sun-like stars: In lockstep with Fe

Ramirez 2009

α elements in solar-type stars

Ramirez 2009

Abundance patterns in disk FG*

 α elements

α elements: disk + halo stars

Radial abundance profile

- Thin disk: open clusters ([Fe/H]) and B stars (O/H, NLTE!!!): gradient like HII regions
- Halo: no gradient
- Globular Clusters:
 - Inner, metal-rich system: 'disk clusters'
 - Outer, metal-poor system: 'halo clusters'
- Thick disk: [Fe/H] ≈ -1 ... -1.6; no radial or vertical gradient in [Fe/H]

Disk and Halo

- Eggen, Lynden-Bell & Sandage (1962) find that the photometric UV-excess (measure of [Fe/H]) is correlated with eccentricity of orbit and vertical velocity
- Scenario for formation of MWG:
 - Collapse from single protogalactic cloud → metalpoor stars on radial orbits
 - Gas settles into rotating disk, forms metal rich stars

E L S

The Bulge

[Fe/H]

-0.25

- Rich 1988: K giants, Mg, Fel indices -1...+0.8
- Terndrup 1991: M giants, R=1000 +0.3
- Geisler+Friel 92: giants, photometry +0.17
- McWilliam+Rich 94: spectro
 - − → Rich 88 overestimate Fe/H in metal-rich stars
 - Solar neighbourhood -0.17
- Terndrup 95, Sadler 96; Io-R spectro -0.1
- Fulbright 06/07: Keck spectro
- Zoccali et al. 03: photom.
- Zoccali et al. 09: spectro

- -1.2...+1.1
- -1.5...+0.4
- -1.4...+0.3

Metallicity distribution functions

Count the number of stars in each metallicity bin ... useful for comparison with models (cf. later ...)

650 K giants of the Bulge

Spectro R=20000 ESO VLT S/N= 40..90

Similar [Fe/H] range as thin disk

 $[\alpha/Fe]$ is higher than in the disk

Thick disk: [Fe/H] = -1.5 ... -0.2 [α /Fe] like bulge

Gonzales et al. 2011

External spiral galaxies

- Spectra of individual supergiants in M31, M33, M81
 - ±0.2 dex
 - Radial gradient like HII regions
- Colours of red giants (RGB gets redder with metallicity): M31 halo [Fe/H] > 0.6; no radial gradient; outer disk resembles solar neighbourhood

M81 abundance gradient

Sculptor dSph galaxy

Elliptical galaxies: photometry

- [Z/H] ~ 0 ... +0.4 in centers of large E
- Mass-metallicity relation
- Radial gradients (NB. Need population models to compute theoretical colour profile) $\Delta lgZ / \Delta lgR \approx -0.2$
- Abundance ratios: Mg, Na, N larger than expected from scaled solar pattern

Mass-metallicity relation

Henry+Worthey 1999

Elliptical galaxies: gradients

Thomsen+Baum 1987