Protoplanetary disk masses from CO isotopologues line emission

A. Miotello^{1,2}, S. Bruderer², E. F. van Dishoeck^{1,2} (A&A, Submitted)

(1) Leiden Observatory(2) MPE Garching

miotello@strw.leidenuniv.nl

Why: One of the key properties for understanding how disks evolve to planetary systems is their gas+dust mass.

Conclusions:

The disk mass can be

What: Model

determinations of gas disk masses through a proper treatment of **CO isotopologues** compared with observations of optically thin ¹³CO, C¹⁸O, and C¹⁷O lines. **underestimated** by up to **two orders of magnitudes** if isotope selective effects are not properly taken into account.

How it was done (NOISO):

The isotopologue ratios were taken to be constant at the elemental isotope values found in the local ISM. **How it is done (ISO):** Isotope-selective photodissociation is properly treated for the first time in a full thermo-chemical disk model. Isotopologues are considered as independent species.

1. Parameters in

the grid of models

ai airie (ei	Kange
hemistry	
hemical network	ISO / NOISO
hemical age	1 Myr
hysical structure	•
•	1
	0.1
c	0.1 rad
c	200 AU
out	400 AU
l _{gas}	$10^{-4}, 10^{-3}, 10^{-2}$ M _{\odot}
as-to-dust ratio	100
are	$10^{-2}, 0.99$ - dust
	1
tellar spectrum	
eff	4000, 10000 K
bol	1, $10 L_{\odot}$ - Star
x	$10^{30} \mathrm{erg}\mathrm{s}^{-1}$
ust properties	2
ust	$0.005-1 \mu m$ (small)
	$1-1000 \mu m$ (large)
	R T in o i

4. Mass estimates

	True $M_{\rm d} [M_{\odot}]$		Ratio $(M_{\rm True}/M_{\rm NOISO})$	
	small	large	small	large
	T Tauri		T Tauri	
C ¹⁸ O	10 ⁻³	10 ⁻³	3.3	> 10
	10^{-2}	10 ⁻²	12.5	> 10 ²
C ¹⁷ O	10 ⁻³	10 ⁻³	2.3	5
	10^{-2}	10 ⁻²	3.6	40
	Herbig		Herbig	
$C^{18}O$	10 ⁻³	10 ⁻³	1.7	5.9
	10^{-2}	10^{-2}	1.7	14.7
C ¹⁷ O	10 ⁻³	10 ⁻³	1.4	4.5
	10^{-2}	10^{-2}	1.3	10

Herbig

If isotope-selective photodissociation is considered, there are regions in the disk where $C^{18}O$ and $C^{17}O$ (panel e, f) show an underabundance with respect to ^{12}CO (panel a), when compared with the overall elemental abundance ratios.

T Tauri

The line intensities obtained neglecting isotope selective photodissociation are higher up to a factor of 40 at certain disk radii.

¹Bruderer et al., 2012