Secular evolution of “wave” patterns in circumbinary planetesimal disks
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1 Introduction

Planet formation scenarios and the observed planetary dynamics in bi-
naries pose a number of theoretical challenges, especially in what con-
cerns circumbinary planetary systems. We explore the dynamical stir-
ring of a planetesimal circumbinary disk in the epoch when the gas
component disappears. The orbital precession of the particles forming
the disk generates prominent transient structures. Using a secular the-
ory, we describe these structures analytically.

2 Secular evolution

We consider a binary star with a circumbinary disk of planetesimals;
m1 and mso are the masses of the binary components, a;, and ey, are the
semimajor axis and eccentricity of the binary’s orbit, a is the semimajor
axis of a planetesimal orbit. All masses are expressed in M), distances
in AU, time in yr.

We extend and refine the theory by Moriwaki and Nakagawa [1] for
the secular dynamics of planetesimals in circumbinary disks, combin-
ing the approach of Ref. [1] with that of Ref. [2], where the circumstellar
case was considered. The resulting formulas for the secular evolution
of the eccentricity e and the longitude of pericenter w of a circumbinary
planetesimal are:
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Thus u can be regarded as a “precession rate” of an individual planetes-

imal orbit.
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3 Theory versus numerics

As an actual binary star example, we consider Kepler-16. Its parameters
are: my = 0.69Mw, mo = 0.2026Me, e, = 0.159, a;, = 0.2243 AU [3]. The
eccentricity and longitude of pericenter of the planetesimals (initially in
circular orbits), as semimajor axis functions given by Egs. (1) and (4) at
t = 10° yr, are presented in Figure 1. Radial “waves” of the eccentricity,
well-known from numeric diagrams in Refs. [1, 4, 5], are evident. The
analytic “waves” closely match their numeric counterparts.
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Figure 1: The planetesimal eccentricity (left) and longitude of pericenter (right) in
function of the semimajor axis.

In Figure 2, analytical curves are depicted for the eccentricity and lon-
gitude of pericenter of the circumbinary planet Kepler-16b (a = 0.7016) in

function of time. The secular curves perfectly match the corresponding
numerical-experimental plots constructed in Refs. [6, 7].
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Figure 2: The secular eccentricity oscillation (left) and the longitude-of-pericenter
rotation (right) of the planet Kepler-16b.

4 Spiral pattern

Formation of spiral density waves in astrophysical disks due to differen-
tial precession of orbits was considered earlier in Refs. [8, 9] in different
settings. We investigate the circumbinary disk structure in the gas-free
case. Using our secular theory, we deduce the analytical formula for the
spiral pattern:
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Thus the density wave is described by a shifted lituus.

Fixing the time of evolution to t = 10" binary periods, we analytically
calculate the evolved planetesimal orbits in the semimajor axis a inter-
val from 3qj, to 16a;,. The model parameters are: m; = Mg, mo = 0.2Mp,
e, = 0.4, a, = 1 AU. In Figure 3, the planetesimal orbits are shown
as dotted curves. Results of an SPH-code numerical simulation, corre-
sponding to this model, are also presented.
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Figure 3: The structure of a stirred planetesimal disk. Left: the disk, given by the
secular theory, with the analytical spiral (thick red curve) superimposed. Right: the
corresponding SPH simulation.

The analytical spiral is superimposed, revealing close resemblance to
the density wave.
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