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Aim

This work is focused on estimating the mLE based on current photometric observations and comparison of the results with the interpretation of other authors. Moreover,
conditions that future observations should meet in order to reliably estimate the mLE, are discussed.

Introduction

Figure 1: Hyperion as viewed by Cassini.

Saturn’s seventh moon, Hy-
perion, was discovered in
the XIX century by Bond [2]
and Lassel [9], but it took
more than 100 years to ob-
tain its images due to Voy-
ager 2 [13] and Cassini [17]
missions. Its shape is highly
elongated (360×266×205
km), making it the biggest
known highly aspherical ce-
lestial body in the Solar Sys-
tem. Wisdom et al. [18] predicted Hyperion to remain in
a chaotic rotational state due to its high oblateness. In
dynamical system theory, a chaotic behaviour is recog-
nised through a positive maximal Lyapunov Exponent
(mLE), which describes the rate of divergence (or conver-
gence in the negative case) of initially nearby phase-space
trajectories. The Lyapunov spectrum is relatively easy to
calculate in the case when the differential equations are
known [1, 3, 11, 12, 19]. On the other hand, there exist
algorithms allowing to obtain a mLE from an experimen-
tal or observational time-series [6, 19], although they are
to be used with carefullness, using at least a few hundred
data points [7, 14]. It is a hard task in astronomy to ob-
tain long-term, well-sampled lightcurves. Although, de-
spite this difficulty, it has been efficiently shown that pul-
sar spin-down rates exhibit chaotic dynamics [15]. By re-
sampling the original measurements, artificial time-series
were produced, equivalent to the original ones, contain-
ing such a number of data points that the calculation of
the correlation dimension and the mLE of the attractor,
reconstructed via Takens time delay embedding method
[16], was possible.

Datasets

Hyperion’s long-term observations were carried out twice
in the post Voyager 2 era. In 1987, Klavetter [8] (here-
inafter, K89) performed photometric R band observa-
tions over a time-span of more than 50 days, resulting
in 38 high-quality data points. In 1999 and 2000, De-
vyatkin et al. [4] (hereinafter, D02) conducted C (inte-
gral), B , V and R band observations. According to the
author’s knowledge (Mel’nikov, private communication)
there were no other long-term observations that resulted
in a lightcurve allowing to determine the rotational state
of Hyperion. Although, shortly after the Cassini 2005
passage a ground-based BVR photometry was conducted
[5], resulting in 6 nights of BVR measurements (and ad-
ditional 3 nights of R photometry) over a month-long
period. Unfortunately, this data was undersampled and
period fitting procedures yielded several plausible solu-
tions.

Results of processing the observations

The programmes described in [10, 21] have been used to
process the photometric and simulated lightcurves. The
mutual information and false nearest neighbours have
been used to compute the embedding parameters.
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Figure 2: a) The original K89 data (triangles) and the equally spaced re-sampled

ones (circles). The interpolation was performed using a natural cubic spline,

which was next sampled to form a 5000 points equally spaced dataset. b) Lomb-

Scargle periodogram of the K89 lightcurve: red – original data, green – sampled

with a time step equal to the mean step of the original data, blue – sampled

with a time step short enough to form a 5000 points time-series. The vertical

axis is in normalised auxiliary units.
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Figure 3: Phase space trajectories reconstructed using the Takens delay time

method. All embeddings appear to posses the same topology, indicating each

trajectory stems from the same underlying dynamics. The corresponding datasets

are: a) K89 in 3D b) K89 in 2D, c) C1, d) C2, e) R1, f) R2, g) B2, h) V2. Note

that all of the reconstructions posses the same topology, although d) – h) look like

being of a purely regular time-series. This may be due to the undersampling of

their corresponding lightcurves. The correlation dimensions for these structures

are b) 1.31, c) 1.18, d) 1.20, e) 1.25, f) 1.26, g) 1.13, h) 1.05.
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Figure 4: The Kantz algorithm ap-

plied to K89 data. No unambiguous

linear part is recognizable, hence no

positive mLE can be assigned to

this lightcurve. The data from D02

all possess the same feature. The

observations are either too short, or

undersampled, or both, to obtain a

reliable estimate of the mLE.

Results of numerical simulations
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Figure 5: Simulated lightcurves for the a) chaotic and b) regular initial

conditions (Mel’nikov, private communication). The dynamical system (Eu-

ler equations) is Hamiltonian and six dimensional, therefore there are pairs

λi = −λj . The three independent LEs c) plateu to constant, positive values

(0.077233, 0.025985, 0.007203) for the chaotic case and d) decrease linearly for

the regular region [20].

The lightcurves in Figs. 5 a) and b) have a constant
∆t = 0.1 d, so in order to produce more realistic time-
series only first three points in each day were left and
averaged. Then a cubic spline and the sampling were
performed to produce data consisted of 5000 points.
From these sampled lightcurves, intervals of lengths of
2 months, 6 months and 1 year were chosen randomly;
each had ten realisations. The whole 3 year lightcurve
was taken as one realisation.
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Figure 6: Examples of Kantz algorithm applied to the simulated lightcurves of

lengths a) 2 months, b) 6 months, c) 1 year and d) 3 years.

Conclusions and future work

In this work an attempt to estimate the mLE from photometrically obtained lightcurves of Hyperion has been
made. The existing astronomical data (K89 and D02) are either too short, or undersampled to conduct the proper
processing. Intervals of various length were extracted from the simulated lightcurves spanning ≈ 3 years. The
2 months-long data are too short for the positive mLE to be visible. Yet, the lightcurves spanning periods of
6 months and longer exhibit a linear part in the logarithm of the stretching factor, which is a confirmation of a
chaotic rotation. Therefore, one needs to perform longer and well-sampled observations for a reliable estimation
of the mLE. The next step will be estimating the value of the mLE and checking how it is influenced by the
sparseness of data.
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