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Abstract

In numerical simulations of discs, self-gravitating potentials and forces are traditionally computed from softened gravity (see panel 1). In this context, the softening length λ is set to a fraction of the
disc local thickness h, typically λ/h ∈ [0.3− 1.2]. As shown (see panel 2), such a prescription is not appropriate. We have computed the gravitational potential of a numerical cell, and deduced the
corresponding λ-value. It turns out that the length not only depends on the shape of the cell but it can be an imaginary number (see panels 3 and 4). A dipolar expansion shows that λ effectively
does not depend on the cell’s height only (see panel 5). We present a novel prescription, valid at long-range, that preserves the Newtonian properties at the scale of the numerical grid cells. A general
analysis is in progress.

1. The softened point mass potential

The softened potential is used in continuous media to simplify the numerical treatment of
Newton’s triple integral. It avoids the kernel singularity through a modification of the relative
separation, namely

|~r − ~r ′| →
√√√√√|~r − ~r ′|2 + λ2, (1)

where λ is called the “softening length”. This free parameter is selected by authors more or less
arbritrarily [Papaloizou and Lin, 1989, Morishima and Saio, 1994, Baruteau and Masset, 2008,
Meru and Bate, 2012]. In a discretized disc, the potential of each cell is replaced by the softened
point mass potential (also known as Plummer potential), namely

ψPlum.(~r ; ~r ′0, λ) = −
Gm√√√√√|~r − ~r ′0|2 + λ2

. (2)

The value of λ has a severe impact on the simulations. The figure 1 shows the error on the
gravitational potential as function of the radius and ratio λ/h in two concrete cases. We see that
the nominal value of λ depends on the radius in the disc, and on density profile as well, which is
not acceptable.
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Figure 1: Relative error (log. scale) on potential values when computing the potential in a flat
homogenous disc (left) and in a flared power-law disc (right) when using the softened potential
with λ/h = cst. Parameters and setup: disc inner edge at 0.5; discretization into 32× 64 cells
in the (R, θ)-plane; regular spacing; h ∝ a and mass density ρ ∝ a−2.5 for the flared power-law
disc.

2. λ can be an imaginary number !

According to the Newtonian theory, the potential of a cylindrical sector, as depicted in figure 2, is
given by the triple integral

ψcell(~r) = −
Gm
V

ˆ z0+h

z0−h
dz
ˆ a0+1

2∆a

a0−1
2∆a

da
ˆ θ′0+1

2∆θ′

θ′0−
1
2∆θ′

adθ′

|~r −~r ′|
. (3)

So, λ reproduces exactly the Newtonian potential of the cell if

ψPlum.(~r ;λ)− ψcell(~r) = 0, i.e. λ2 =


Gm
ψcell


2
− |~r − ~r ′0|

2, (4)

everywhere in space. We notice that λ2 < 0 is possible.
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Figure 2: Cylindrical cell (3D-view and projection in the midplane), centre of the Plummer sphere
and associated notations. Points A to E mark the centre of neighbouring cells.
We have computed λ from Eq.(4) using the contour integral given by [Huré et al., 2014], see
figure on the right.
It turns out that λ can be an imaginary number !
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Figure 3: Value of λ computed in the equatorial plane from Eq.(4): imaginary solutions (left)
and real solutions (right). The coordinates of the cell’s centre are R/a0 = 1, α = 0 and z0.

0.98 1.00 1.02
0.00

0.01

0.02

modulus of the imaginary solution (x1000)

R/a0

α/
π

0

0.288

0.576

0.864

1.152

1.44

0.98 1.00 1.02
0.00

0.01

0.02

modulus of the real solution (x1000)

R/a0

α/
π

0

0.288

0.576

0.864

1.152

1.44

Figure 4: Same legend and same color code as for Fig. 3, but zoomed around the numerical
cell (boundary in dashed white line).

3. λ at long-range from a dipolar expansion

We can expand the kernel 1/|~r − ~r ′| over α = θ − θ′0 before performing the integrations in Eq.(3). We then focuse on the long-range behavior of ψcell in Eq.(4). After some tedious calculus, we
obtain the following approximation for λ:

λ2

4a0R
≈

∆θ′2

48
cosα−

1
24


∆a
a0


2 cosα−

3a0
ζ2

0 + R2 sin2α


2|~r −~r ′0|2

 +
h2

12a0R
≡ λ̄2 (5)

We conclude that λ is not proportional to h, as often considered.

Conclusion & perspectives

With such an improved prescription, the error on potential values is reduced by 2− 3 orders of
magnitude typically with respect to the standard prescription where λ ∝ h. This is illustrated in
the figure below for a flared, power-law disc.
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To conclude, we show that
I the standard prescription λ ∝ h is not the nominal choice.
I the appropriate softening length can be an imaginary number; this corresponds to a point mass

potential weaker than that of the cylindrical cell.
Iλ is a complicated function of space and cell’s geometry. Collective effects show λ depends on

how the disc is discretized (radial, azimuthal and vertical sampling).
I it is possible to determine an approximation for the softening length valid at long-range. Thus,

this formula enables to mimic the Newtonian potential of a cylindrical from the Plummer
potential, at long-range.

More details are given in Huré and Trova [2014].
This work can be continued in several ways. It could be interesting to produce a complete
analytical value of λ (valid at short-range too), which is tricky, and to see how this new
prescription impacts on hydrodynamical simulations.
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