Critical core mass and the role of H₂O condensation in enriched protoplanets

Julia Venturini¹, Yann Alibert^{1,2}, Willy Benz¹, Masahiro Ikoma³

UNIVERSITÄT BERN

1

CENTER FOR SPACE AND

¹Center for Space and Habitability & Physikalisches Institut, Universität Bern, CH-3012 Bern, Switzerland ²Observatoire de Besançon, 41 avenue de l'Observatoire, 25000 Besançon, France ³ Department of Earth and Planetary Science, University of Tokyo

Abstract

During the formation of a planet, once the core reaches a lunar mass, it can start to bind some gas from the protoplanetary disk. The planetesimals that are accreted from this stage on, undergo thermal ablation and physical disruption when crossing the atmosphere. Thus, the primordial H-He atmosphere gets enriched in volatiles and silicates from the planetesimals.

This change of composition affects the thermal structure of the atmosphere. In particular, if the planet is located in a region where the temperature and pressure are suited for water condensation to take place, the release of latent heat modifies drastically the adiabatic temperature gradient. We discuss how this effect reduces the critical core mass and the implications this has for the type of planets that can be formed.

European Research Council Established by the European Commission

1) Internal Structure Code:

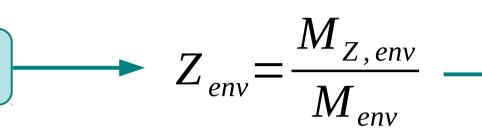
Solves the internal structure equations assuming a given luminosity.

- **EOS**: software CEA (Chemical Equilibrium) Applications) \rightarrow
 - Solves chemical equilibrium for arbitrary gaseous mixture.
 - Ideal gas, but considers dissociation and ionization of compounds.
 - Includes condensation of some species, like H_2O in solid and liquid phase.

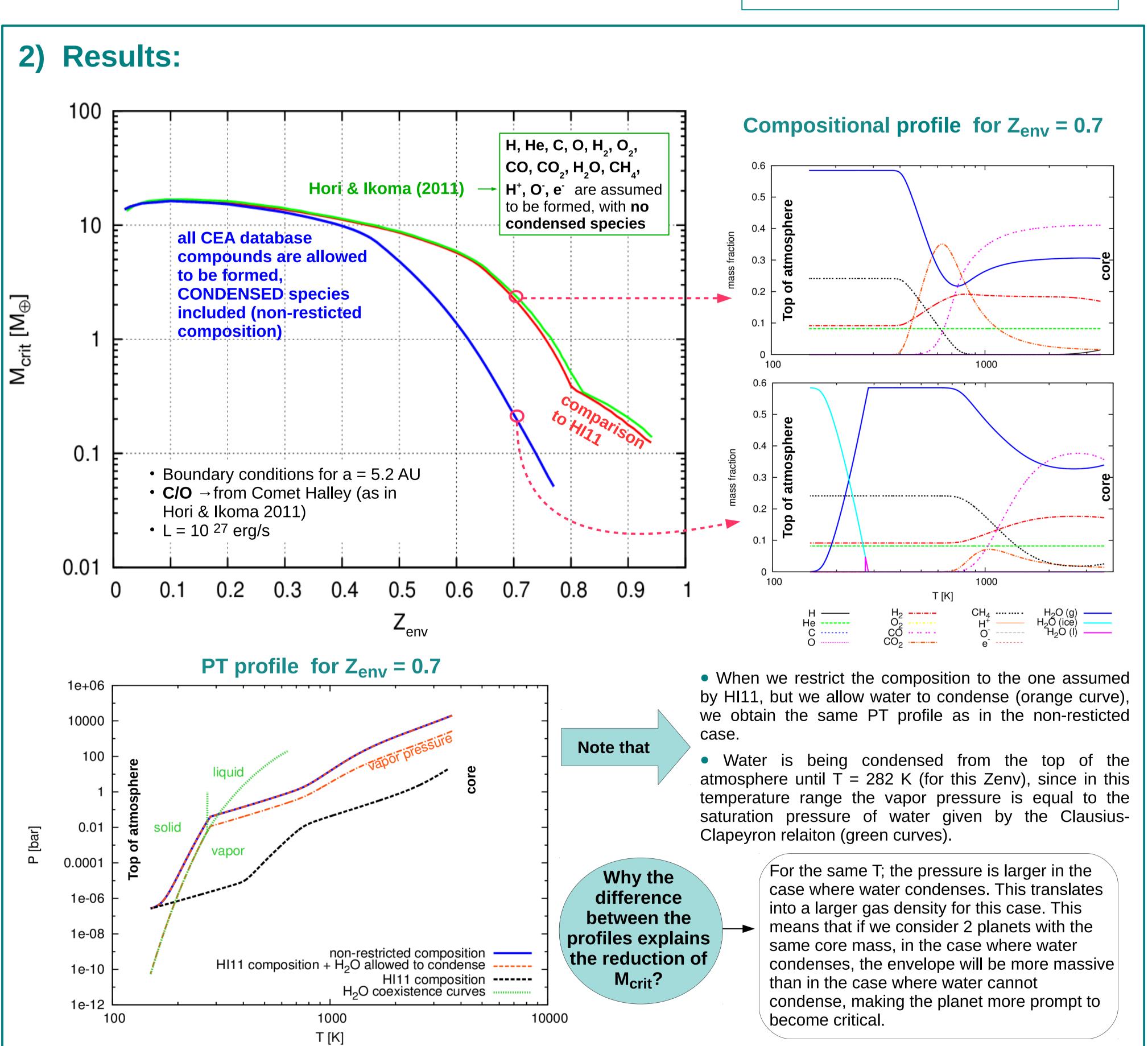
• Opacities:

- Gas: tables of Alexander & Ferguson (1994) extended to consider all ranges of metallicities.
- Dust: Semenov et al. (2003)

Discussion: possible postcritical evolution for enriched



maximum mass of the core able to sustain an envelope in hydrostatic equilibrium

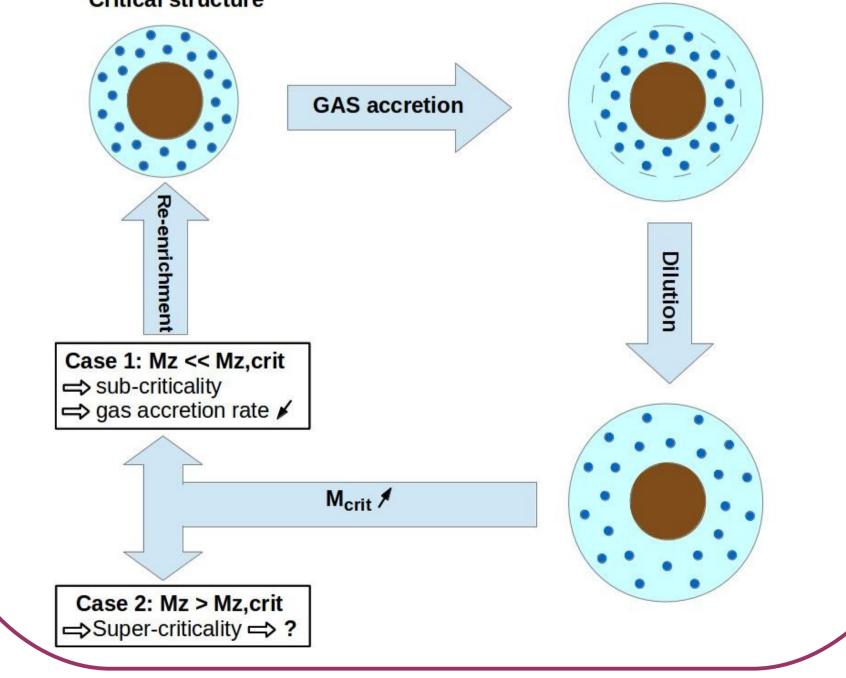


envelope metallicities

critical core mass (M_{crit})

M_{Z,env}: mass of elements heavier than H and He in the envelope.

protoplanets


If a planet reaches the critical mass at a given Z_{crit} , two effects will appear. First, as a result of solid (i.e., planetesimal) accretion, the metal content of the planet (M_Z) increases. Second, as a result of gas accretion, the mean Z of the planet change. According to Ikoma et al. (2000), the gas accretion rate at the critical point is similar, but slightly larger, than the planetesimal accretion rate. At the time when the critical core mass is reached, the accretion of solids and gas will lead to a decrease of the mean Z in the envelope. As a result, the critical core mass, as well as the total amount of heavy elements for the critical structure M_{Z.crit}, increase. A key point, for the immediate future of the planet is therefore to compare the increase of M_Z (resulting from the accretion

of planetesimals) and the increase in the critical amount of heavy elements.

Thus, two possible scenarios could take place after the critical core mass is reached (see sketch below). In the first scenario (case 1), the increase of critical mass is faster than the increase of M_Z . In this case, the planet will become again subcritical, will not accrete anymore gas. Finally, as a result of planetesimal accretion, the metallicty may increase again. In the second scenario (case 2), the increase of critical mass is smaller than the increase of M_Z . In this case, the planet will remain super-critical, and might become a giant planet.

For planets located beyond the iceline, where water condensation can occur, case 1 is more likely to happen, given the larger increase in M_{crit} when the envelope dilutes compared to the case where water does not condense.

Critical structure

References:

- Alexander, D. R., & Ferguson, J. W. 1994, ApJ, 437, 879
- Gordon & McBride, 1994. NASA Reference Publication 1311.
- Hori, Y & Ikoma, M. 2011, MNRAS, 416, 1419.
- Mizuno, H. 1980, Progress of Theoretical Physics, 64, 544
- Semenov, D. et al. 2003, A&A, 410, 611.
- Venturini et al. 2014, submitted to A&A

Conclusions:

• The critical core mass is reduced when the envelope is enriched in heavy elements. The results of Hori & ikoma (2011) were recovered.

• The reduction of M_{crit} is even larger if water is present in the outer parts of the envelope, and the boundary conditions are suited for H_2O to condense. In this case, the release of latent heat that takes place when condensation occurs, changes drastically the pressure-temperature profile, which translates into an increase of pressure for the same temperature. Thus, compared to the case where water is not allowed to condense, the density of the envelope in the case where water condenses is much higher, producing a more massive envelope for the same core mass.

• The post-critical evolution of an enriched protoplanet is not easy to infer. In principle, both giant planets and small enriched objects could be formed, and the last type of objects could preferentially result in the case where water condesation takes place. Quasi-static codes to study this properly is in a work in progress stage.