On the radius of habitable planets

Yann ALIBERT

European Research Council

UNIVERSITÄT BERN

CENTER FOR SPACE AND HABITABILITY

FONDS NATIONAL SUISSE DE LA RECHERCHE SCIENTIFIQUE

Low mass transiting planets

The Sun's luminosity

The geological C cycle stabilizes the surface temperature

Effect of Ocean mass

High pressure ice

Necessary condition for habitable planet

I- the surface temperature and pressure are 'nice'

2- there is a CO2 cycle

the pressure at the bottom of the (global) ocean cannot be too high

Large radius implies large water fraction no CO2 cycle large gas fraction surface T,P outside of the 'nice' zone

> large-R planets are NOT habitable small-R planets: we don't know

Simplified planetary structure

Sotin et al. 2007 1. Metallic core 2. Lower silicate mantle 3. Upper silicate mantle 5. Ice I / Liquid water

5 layers

- a core
- an inner mantle
- an outer mantle
- a water layer
- a gas envelope

Adiabatic T profile

$$\frac{dr}{dP} = \frac{1}{\rho g} \qquad \qquad \frac{dm}{dP} = \frac{4\pi r^2}{g} \qquad \qquad \frac{dT}{dP} = \nabla_{ad}$$

hydrostatic equilibrium

mass conservation

energy transport

Test of the model: the Earth

The gaseous part

convective-isothermal model

$$T_{\rm skin} = T_{\rm surf}/2^{1/4}$$

perfect gas with different composition

convective-radiative model

$$T^{4} = \frac{3T_{\text{int}}^{4}}{4} \left[\frac{2}{3} + \tau \right]$$
$$+ \frac{3T_{\text{irr}}^{4}}{4} f \left[\frac{2}{3} + \frac{1}{\gamma\sqrt{3}} + \left(\frac{\gamma}{\sqrt{3}} - \frac{1}{\gamma\sqrt{3}} \right) e^{-\gamma\tau\sqrt{3}} \right]$$
$$\gamma = \kappa_{\text{V}} / \kappa_{\text{th}}$$

includes greenhouse effect

Transit radius

$$\tau_{\rm ch}(\nu, r) = 2 \int_0^\infty \rho \kappa_{\nu} \frac{z+r}{(z^2+2rz)^{1/2}} dz.$$

opacity in the visible

transit radius for

$$\tau_{\rm ch} = 2/3$$

Guillot 2010

Low mass transiting planets

Ocean mass and water fraction

Using different gas models

Thank you!