

Protoplanetary disks in the Auriga-California Molecular Cloud

Hannah Broekhoven-Fiene, Brenda Matthews, Paul Harvey, Gaspard Duchêne, Rita Mann, James DiFrancesco, and JCMT GBS collaboration

The Auriga-California Molecular Cloud

- LkHα 101 early B star
- NGC 1579 young stellar cluster
- ~1arcmin HII region

	Auriga		
Distance	450 pc		
Size	80 pc		
Mass	${\sim}10^5M_{solar}$		

The Auriga-California Molecular Cloud

- LkHα 101 early B star
- NGC 1579 young stellar cluster
- ~1arcmin HII region

	Auriga		
Distance	450 pc		
Size	80 pc		
Mass	${\sim}10^5M_{solar}$		

Identifying the protoplanetary disk sample - Spitzer

Spitzer Survey of Interstellar Clouds (PI L. Allen)

Identifying the protoplanetary disk sample - Spitzer

Spitzer Survey of Interstellar Clouds (PI L. Allen)

Herschel

- large scale structure
- 60 compact sources (12 new)

• ider

- sources less blended
- probing optically thin emission
- sensitive to younger sources

- sources less blended
- probing optically thin emission
- sensitive to younger sources

- sources less blended
- probing optically thin emission
- sensitive to younger sources

- sources less blended
- probing optically thin emission
- sensitive to younger sources

The power of radio interferometry

- Longer wavelengths with better resolution
- isolating sources from each other and surrounding cloud emission

YSO	SMA 1.3 mm (measured)	SMA 0.88 mm (expected)	SCUBA-2 0.85 mm (peak)
108 - blended with YSOs and cloud	20 mJy	55 mJy	240 mJy
128 - more isolated	36 mJy	100 mJy	120 mJy

Jansky VLA observations

Ø

- Trace cm-sized grains
- Constrain the level of contamination from free-free emission to the thermal dust emission
- Comparison to Disks@EVLA (PI Claire Chandler) program that targets disks in nearby clouds

05

Conclusions/Summary

- ACMC is a nearby GMC similar in mass, extent, and distance to the Orion A MC, however, with a startling contrast in environment.
- Detections at both submm and² wavelengths used to investigate grain²s¹²e⁻distribution.
- Next step is to comple catalogues and sets and SED's for individual HD169142 various data sets and SED's for individual HD169142 objects

-2

• Follow-up high resolution detected disks by the disk and dust properties further, such as disk sizes and dust grain size distribution within the disk.

Thank you!

EXTRA SLIDES

> estimate where excess begins and the slope of the excess
> estimate disk luminosity

Broekhoven-Fiene+, subm.

> estimate where excess begins and the slope of the excess
> estimate disk luminosity

Broekhoven-Fiene+, subm.

Disk population

> estimate where excess begins and the slope of the excess
> estimate disk luminosity

Broekhoven-Fiene+, subm.

Herschelthuxes

Class breakdowns for different clouds

Class breakdowns for groups within AMC and Perseus

Dust distribution in disks

Large dust grains

Dust settling

Williams & Cieza 2011

Optically thin dust

 $F_{\nu} \approx \kappa(\nu) M_d B_{\nu}(T_d) d^{-2}$

Dust distribution in disks

Large dust grains

Dust settling

Williams & Cieza 2011

Optically thin dust

 $F_{\nu} \approx \kappa(\nu) M_d B_{\nu}(T_d) d^{-2}$

Dust distribution in disks

Large dust grains

Dust settling

Williams & Cieza 2011

Optically thin dust

$$F_{\nu} \approx \kappa(\nu) M_d B_{\nu}(T_d) d^{-2}$$

Signatures of grain growth

Evolution in β suggests evolution in dust grain size

Evolution in β suggests evolution in dust grain size

Case study: ONC

Image credit: Space Telescope Science Institute

Mann & Williams 2009

Identify disk host candidates

