What are Little Worlds Made Of? Stellar Abundances and the Building Blocks of Planets

Eric Gaidos Geology and Geophysics University of Hawaii

Cosmic Earth (by atoms)

The Carbon to Oxygen Ratio (C/O) Solar C/O = 0.55 ± 0.12 (Caffau et al. 2010) C + O \rightarrow CO

Condensation temperature ~ 50 K

C/O < 1 (excess O)

- Carbon is depleted
- Silicates condense at high T
- Most excess O condenses as H₂O

C/O > 1 (excess C)

Oxygen is depleted Silicon carbides condense at high T Most excess C condenses as graphite or hydrocarbons

$$\frac{water}{rock} = 2.23 \frac{0.88 - C/O}{1 + C/O}$$

Stars and Planets: A Common Chemical Inheritance

Interstellar medium

Molecular cloud core

Solar System (C/O=0.55)

Problem 1: Most/all Stars Have Solar or Lower C/O

Fewer than < 1 in 10^4 M Dwarfs have C/O ~ 1

Problem 2: Galactic Chemical Evolution Models do not Predict C/O ~ 1

Gaidos in prep.

Problem 3. Solar System Planets did not Condense from Hot Disk Gas but mostly Processed Interstellar Dust

What is the C/O of Interstellar Dust?

Controlled by rates of growth and destruction of grains in the ISM

Inferred Elemental Growth and Destruction Rates in Dust

A Signature of Planets?

Stars and Planets: A Common Chemical Inheritance

Interstellar medium

Molecular cloud core

ISM Gas Depletion Imitates Condensation Temperature: "Planet Signature" may be Gas-Dust Segregation

Summary

- → Stars with primordial C/O ~ 1 are rare, if they exist at all, and are not predicted by GCE models
- Building blocks of Solar System planets were formed from processed interstellar dust, with little condensates from disk gas
- ISM dust is likely to be as oxidized or more oxidized than the bulk ISM
- → Variation in the abundances of the refractory elements in stars may be a signature of gas- dust segregation, not planet formation
- Exoplanet scientists need to talk to cosmochemists and ISM researches more

(PSRD graphic based on calculations done by Katarina Lodders, Washington University in St. Louis.)

Condensation Sequence for Gas of Solar Composition

Ebel (2006)

Variation of Condensation Sequence with C/O

Low C/O: Water Worlds?

Leger et al. (2004)

Variation of C/O Between Stars?

55 Cnc: A C/O=1.12 Star with a Carbide Planet?

Medhuseden et al. (2012)

Downward Revision of 55 Cnc C/O

Measuring [C] and [O] is difficult for solar-type stars

Measuring C/O of the Sun also difficult!

Teske et al. (2013)

Oxygen-bearing molecules have prominent absorption features s in M dwarf spectra

Reason 2: Galactic Chemical Evolution Models do not Predict C/O > 1

Model Tuned to Reproduce Observables of Milky Way (solar galactocentric radius)

Box Model of Galactic Chemical Evolution

Barnard 68

Primitive Solar System Objects contain Relict Material

Material	Source	$\begin{array}{c} {\rm Grain~Size} \\ (\mu {\rm m}) \end{array}$	Abundance (ppm)†	Chemical resistance	Thermal resistance
Diamond		~ 0.002	~ 1400		
P3 fraction	?			high	low
HL fraction	circumstellar			very high	high
Silicon carbide	circumstellar	0.1 - 20	13 - 14	high	high
Graphite	circumstellar	0.1 - 10	7-10	moderate	low
D-rich organics	interstellar			low to mod.	low to mod.
P1 noble gas carrier	interstellar	*	*	moderate	high
$Corundum (Al_2O_3)$	circumstellar	0.5 - 3	0.01	high	very high
Spinel $(MgAl_2O_4)$	circumstellar	0.1 - 3	1.2	high	very high
Hibonite $(CaAl_{12}O_{19})$	circumstellar	1-2	0.02	high	very high
$\frac{\text{Forsterite } (Mg_2SiO_4)}{\text{Enstatite } (MgSiO_3)} \}$	circumstellar	0.2 - 0.5	10-1800	low to mod.	high
Amorphous silicates	circumstellar	0.2 - 0.5	20-3600	low	moderate

Table 1. Types and properties of pre-solar materials identified in meteorites and IDPs

Huss & Draine (2006)

Grain settling produces high dust/gas ratio and non solar-composition at the disk mid-plane

Dust Abundances from Measurements of Depletion in the Gas Phase

Jenkins (2009)

Gonzalez-Hernandez et al. (2013)

Reason 3: Most Primitive Material is not a Condensate!

Yellow = Ca, Green = Mg, Blue = Si, Red = Fe

Hezel et al. (2008)

The Solar Photosphere vs. Primitive Meteorites

Thielens et al. Model of ISM Grain Evolution

Equations of motion of depletion:

$$\begin{split} \frac{\delta_c}{dt} &= -k_2 \left(\delta_c - \delta_i \right) + k_4 \left(1 - \delta_c \right) \qquad \delta_c = \frac{1 + k_1/k_3}{1 + k_1/k_3 + k_2/k_4}; \\ \frac{\delta_i}{dt} &= -k_1 \left(\delta_i - \delta_c \right) + k_3 \delta_i, \qquad \delta_i = \frac{k_1/k_3}{1 + k_1/k_3 + k_2/k_4}. \end{split}$$

Effect of C/O on the Spectra of M Dwarf Stars

Interstellar dust has similar C/O of bulk ISM

Gaidos in prep.