Short-period planets of intermediate-mass stars

Fike W. Guenther Thüringer Landessternwarte Tautenburg and the CoRoT team

Two species of planets

--> Planets of M~10 M_{Earth} with densities of 1-10 gcm⁻³ --> planets with M>1 $M_{Jupiter}$ relation between mass and density

A highlight was the discovery of CoRoT-20b:

A planet 4.24+/-0.23 M_{Jup} (=1350 M_{Earth}), with a core of 680 to 1040 M_{Earth} (between 55 and 77% of its total mass is the core), and a density 8.87+/-1.10 gcm⁻³ that is orbiting a star of 1.14+/-0.08 M_{sun} (Deleuil et al. 2012)

Surveys of giant stars show that massive stars also have a lot of massive planets.

No (massive) planets with 0.7 AU for stars with M>1.4 Msun

Yasuhiro Hasegawa and Ralph E. Pudritz 2014

Why is it interesting to search for shortperiod planets of intermediate-mass stars?

• FORMARTION: Theory predicts that stars more massive than the sun should have a higher frequency of planets. However, the life-time of the disk is short (t_{disk} =2.5 Myrs for M*~1.0 M_{sun}, t_{disk} =1.2 Myrs for M*>1.3 M_{sun}).

----> Is there enough time for the planets to form and migrate inwards?

- EVOLUTION: Close-in planets of intermediate-mass stars would be engulfed when the star becomes a giant: How does this effect stellar evolution?
- EVOLTION: An A5V star is in the optical regime 14 times brighter than the sun! How does this affect the atmosphere of the planet?

CoRoT

(Convection, Rotation et Transites planétaires)

Dec 27, 2006 to Nov 2, 2012 mass: 605 kg Apertures of the telescope: 27 cm Field of view: 4.5, 2.3 Square degrees per field

Harvest of CoRoT

- 163664 stars with $m_v = 11-16.5$ observed.
- 26 fields, with 58 square degrees in total observed.
- Shortest run 21 days, longest 152 days.
- Noise level 100,150, 250, ppm in 3h at m_v=12,13,14.
- 3-colour light-curves for $m_v > 15$.
- 60% of all planets with 2-4 R_{Earth} detected for stars of m_v =14.
- 3900 stars with transits; 500 in the planetary regime.
- Follow-up: > 200 nights for photometric FU (mostly 1-2m class telescopes); > 350 nights for RV FU (mostly 2-4 m class); 280 cases fully resolved: 19% diluted binaries; 27% undiluted binaries.
- 35 fully characterized planets.
- Unsolved cases: 20% too faint, 10% ephemeris lost,
- ---> 20% rotate too fast !

The planets of intermediate-mass stars should already be in the candidate list!

- Candidates

 (from Santern),
 size of the dots
 indicates
 brightness of
 the star
- CoRoT has the capability to detect hot Jupiters of stars as early as B4V, and planets of 2 R_{Earth} around Gtype stars

Detecting planets in rapidly rotating stars using time resolved spectroscopy

Volgt & Penrod 1983

HD15082b (WASP-33b:) Time series of the residual average spectral line: the "white" line from the middle right to the upper left is the signature of the planet (NOT, McDO, TLS-data)

A survey for short period transiting planets of stars more massive than the sun using the CoRoT satellite

Excluding false-positives

- Detailed modelling of the (multi-colour) LCs
- Photometry/low-resolution spectroscopy to exclude giant stars (consistence checks)
- Seeing-limited observation in and out of transit
- ---> AO-imaging ---> HR IR-spectroscopy
- Radial-velocity observations

AO-imaging: Expectation: <10% of the stars should have a companions. Result: 30-40% have one!

High resolution nearinfrared spectroscopy to exclude companions

- The brightness difference between a solar-like star and a potential FP is much smaller in the IR than in the optical (upper Fig.: brightness difference between a primary and a secondary that mimics a transiting Jupiter-like planet).
- The CO-lines become stronger for cooler stars.

After the detailed light-curve analysis (consistence checks) and seeing limited observations, the remaining false-positives typically look like this!

Sub-stellar companions orbiting stars with M>1.1 M_{sun} discovered by CoRoT

Name	M _{star}	Period[d]	Rplanet [R _{Jup}]	Mplanet [M _{Jup}]	Density [g cm ⁻³]
CoRoT-3b	1.37±0.09	4.3	1.01±0.07	21.7±1.0	26.4±5.6
CoRoT-15b	1.32±0.12	3.0	1.12±0.23	63.3±4.1	59±35
CoRoT-21b	1.29±-0.09	2.7	1.30±0.14	2.53±0.37	1.53±0.53
CoRoT-11b	1.27±-0.05	3.0	1.43±0.03	2.33±0.34	0.99±0.15
CoRoT-19b	1.20±-0.05	3.9	1.29±0.03	1.14±0.05	0.51±0.05
CoRoT-4b	1.16±-0.02	9.2	1.17±0.05	0.75±0.01	0.58±0.15
CoRoT-22b	1.15±-0.08	9.7	0.52±0.12	<0.15	<1.3
CoRoT-20b	1.14±0.08	9.2	0.84±0.04	4.24±0.23	9.87±1.10
CoRoT-23b	1.14±0.08	3.6	1.05±0.13	2.8±0.3	3.3±1.0
CoRoT-14b	1.13±0.09	1.5	1.09±0.07	7.6±0.6	7.3±1.5
CoRoT-32b	1.35±0.06	20	1.14±0.04	2.39±0.35	2.2±0.3
CoRoT-35b	1.4	5.6	1.9	<1.4	

A new object: CoRoT 35b

CoRoT-35b

Mass / radius	1.43±0.04 M _{sun} 1.93±0.11 Rs _{un}		
spectral type	F4V		
T _{eff}	6430±100 K		
log(g)	4.0±0.1		
v sin i	21 kms ⁻¹		
[M/H]	0.0±0.0		
Orbital period	5.616278±0.000051 days		
Planet mass	<1.4 M _{jup}		
Planet radius	1.9±0.1 R _{jup}		
Orbital separation, a	0.064 AU = 7 R _{star}		
Projected obliquity λ	90° VTLS-UVES, NOT-FIES		

Transit light-curve obtained by CoRoT

Seeing limited imaging with 1-m WISE& IAC 0.8 m telescopes: Transit is detected on source!

#: R

0: 13.0 1: 17.4 2: 17.7

3: 16.8

4: 16.1

6: 18.4

9: 15.8

10: 17.5

12: 16.4

AO-imaging

- PISCES@LBT in J and K-band
- CoRoT LC shows transit with period 5.6d, DF/F=0.9%
- V=13.055+/-0.066 --> we have to exclude stars of V=18.2 mag
- PISCES observations show two additional stars: star1: 1.96 arcsec distance, J=15.7+/-0.1, K=16.2+/-0.1 --> fainter than V=18.2 star2: 3.46 arcsec distance, J=17.1+/-0.1, K=16.8+/-0.1 --> fainter than V=18.2

RV-measurements during the transit

Time-resolved spectroscopy of CoRoT-35b: The planet has a polar orbit!

Statistics of the planet discoveries:

- 0-5% are orbiting stars of 1.3-3.2 M_{sun} ("A-stars")
- 30-32% are orbiting stars of 1.1 to 1.3 M_{sun} ("F-stars")
- 50-54% are orbiting stars of 0.9- 1.1 M_{sun} ("G-stars")
- 13-16% are orbiting stars of 0.4-0.8 M_{sun} ("K-stars")

The sample:

- 16% are stars of 1.3-3.2 M_{sun} ("A-stars")
- 35% are stars of 1.1 to 1.3 M_{sun} ("F-stars")
- 15% are stars of 0.9- 1.1 M_{sun} ("G-stars")
- 5% are stars of 0.4-0.8 M_{sun} ("K-stars")

Results:

---> We have surveyed 19 candidates with spectral-types B5V to F8V.

---> Although 25% of the CoRoT stars have masses in the range from 1.5 and 3.2 M_{sun}, we found only 1-2 that have substellar companions.

--> We do not find the same rapid increase of the frequency of massive planets for close-in planets as it is found for planets at large orbital distance (RV-surveys of giant stars).

---> The number of planets found for stars in the mass-range between 1.1 and 1.5 M_{sun} is within the errors the same as for solar-like stars.

Continue survey using Kepler 2 mission

- 300 ppm at V=14 in 3 hours (same as CoRoT)
- 10 fields, each observed for 80 days
- 1000 square degrees in total (17 times better than CoRoT).
- Field 0: 2014 Apr 30
- Field 1: 2014 Jul 22
- Field 2: 2014 Oct 14
- Field 3: 2015 Jan 5

A short look at Kepler data

- 2011: based on stellar statistics Morton & Johnson estimate the FP-art to be <10%.
- 2012: Santerne et al. obtain RV-measurements of 46 candidates with transit depth >0.4% and periods of less than 26d, from which they derive a FP-rate of 46%.
- 2012: Colón et al. obtain multicolour transit photometry 4 candidates with R < 6 R_{Earth}, two candidates are FP. The probability of identifying two false positives out of a sample of four targets is less than 1%, assuming an overall false positive rate for Kepler planet candidates of 10%.
- 2012: Lillo-Box et al. observes 98 candidates using lucky imaging. In 41.8% of the candidates, they find at least one additional star within 6 arcsec. In 17% there is at least one star within 2 arcsec. Of these, 42% of the same i-z colour as a physical companion.
- 2014: Gilliland et al. observes 23 cool, low mass planet candidates observed with HST. 6 have physical companions. This is 3 times higher than expected.

The first known transiting planet of a star with M_{*}>1.4 M_{sun} is HD15082b (WASP-33b)

mass	1.495±0.031 M _{sun}		
spectral type	A5V		
T _{eff}	7430±100 K		
Log(g)	4.3±0.2		
v sin i	90±10 kms ⁻¹		
[M/H]	0.1±0.2		
Orbital period	1.2198669±0.0000012 days		
Planet mass	<2.0 M _{jup} ?		
Planet radius	1.497±0.045 R _{jup}		
Orbital separation, a	0.02555±0.00017 AU = 3.79±0.67 R _{star}		
Projected obliquity λ	251.2±1.0° TLS 254.2±1.2° McD 251.6±0.7° NOT		

Known planets of stars with M> 1.4 Msun within 0.2 AU

Name of star	type	Mass of star	Spectral	Mass of	Semi-major axis
		[Msun]	type	planet [Mjup]	[AU]
Kepler-340c	transit	2.11	?	?	0.178
Kepler-340b	transit	2.11	?	?	0.134
WASP-78b	transit	2.02+/-0.09	F8	1.16+/-0.1	0.0415+/0.0006
HD102956b	RV	1.68+/-0.11	Α	0.96+/-0.05	0.081+/-0.002
WASP-82b	transit	1.63+/-0.08	F5	1.24+/-0.04	0.0447+/0.0007
WASP-71b	transit	1.572+/-0.062	F8	2.258+/-0.072	0.04631+/0.0006
WASP-100b	transit	1.57+/-0.1	F2	2.03+/-0.12	0.0457+/-0.001
WASP-79b	transit	1.56+/-0.09	F3	0.9+/-0.09	0.0539+/-0.0009
CoRoT-11b	transit	1.56+/-0.1	F6V	2.33+/-0.27	0.04351+/0.00036
WASP-90b	transit	1.55+/-0.1	F6	0.63+/-0.07	0.0562+/-0.0012
WASP-49b	transit	?	?	0.378+/-0.027	0.0378+/-0.027
OGLE2-TRL9b	transit	1.52+/-0.08	F3	4.34+/-1.48	0.0308+/-0.0005
HAT-P-40b	transit	1.512+/0.077	?	0.615+/-0.038	0.0608+/-0.0011
HAT-P-7b	transit	1.51+/-0.05	?	1.741+/0.028	0.0379+/-0.0004
WASP-33b	transit	1.495+/-0.031	A5	<4.59	0.02558+/-0.0023
HD38529b	RV	1.48+/-0.05	G4IV	0.78	0.131+/-0.0015
Kepler-40b	transit	1.48+/-0.06	F5IV	2.2+/-0.4	0.08+/-0.003
WASP-99b	transit	1.48+/-0.1	F8	2.78+/-0.13	0.0717+/-0.0016
KELT-1b	transit	1.471+/-0.045	F5	27.38+/-0.93	0.02472+/0.00039
WASP-76b	transit	1.46+/-0.07	F7	0.92+/-0.03	0.033+/-0.0005
WASP-88b	transit	1.45+/-0.05	F6	0.56+/-0.08	0.06431+/0.00064
Kepler-238b	transit	1.43+/-1.31	?	?	0.034
Kepler-238c	transit	1.43+/-1.31	?	?	0.069
Kepler-238d	transit	1.43+/-1.31	?	?	0.115
XO-3b	transit	1.41+/-0.08	F5V	11.79+/-0.59	0.0454+/-0.00082
CoRoT-3b	transit	1.41+/-0.08	F3V	21.77+/-1.0	0.057+/-0.003
HAT-P-39b	transit	1.404+/-0.051	?	0.599+/-0.099	0.0509+/-0.0006
HAT-P-33b	transit	1.403+/-0.096	F	0.763+/-0.117	0.0503+/-0.0011
Kepler-74b	transit	1.40+/-0.13	F8	0.68+/-0.09	0.084+/-0.014
PSR 1719-14b	pulsar	1.40	-	1.0	0.0044