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Once upon a time...

Laibe and Price (2011, 2012 a,b), Ayliffe et al. (2012)
Goals:

• upgrade the old two fluids gas+dust SPH algorithm from Monaghan’s (1995)

• implementation in the code PHANTOM

From dust in a 1D box... ..to dust in a 3D disc



Pb 1: beware of artificial clumping !

hd

Dust below the gas resolution: artificial aggregates

Planet formation requires dust to concentrate a lot!



A sound wave in a mixture with small grains:

From Charybe to Scylla...

Numerics does not match analytics for small grains !

Analytics (gas and dust)

Numerics (gas and dust)



How to learn physics the hard way

resolution
(cost)

Gas and dust 
not quite 

superimposed

Energy hugely
over-dissipated

A sound wave in a mixture with small grains:



Pb2: spatial resolution criterion for strong drag

!

hg

The physical spatial dephasing between the phases is not resolved: 

7
th

international SPHERIC workshop Prato, Italy, May 29-31, 2012

Fig. 4. Results of the dustywave test in 3D at t = 0 (top row) and after 1 and

2 wave periods (middle and bottom rows) using 2×32
3

particles, K = 1 and a

dust-to-gas ratio of unity. The analytic solution is given by the solid/red (gas)

and long-dashed/red (dust) lines. “Double-hump” shaped kernels provide a

more accurate solution than the standard bell-shaped kernel.

leads to a severe damping of the amplitude of the wave (see

the bottom picture of Fig. 5 where black solid [gas] and open

[dust] circles, on top of each other) compared to the analytic

solution (red solid and long-dashed lines, also on top of each

other).

Interestingly, this issue is not related to the nature of the

SPH scheme, but to the intrinsic physical problem we aim to

simulate, i.e. the propagation of a wave in a mixture where the

drag stopping time ts is much smaller than the period T of the

wave. In this case, the drag term efficiently damps the initial

differential velocity between the gas and the dust in a few ts.
However, the pressure continues to drive the propagation of

the wave in the gas, leading to a small residual de-phasing of

order ∼ csts occurs which is the distance travelled by the gas

before it is damped by the dust (i.e. the lines of the analytic

solution of Fig. 5 are not rigorously o top of each other but are

slightly shifted by the length ∼ csts). This de-phasing induces

also a small residual differential velocity which in turn be

damped by the drag. This small differential effect dissipates

the total kinetic energy on a timescale ∼ T 2/ts.
The spatial de-phasing between the gas and the dust repre-

Fig. 5. Resolution study for the dustywave test in 1D using a high drag

coefficient (K = 100) and a dust-to-gas ratio of unity using 32, 64, 128, 256,

512 and 1024 particles from bottom to top. At large drag high resolution is

required to resolve the small differential motions between the fluids and thus

prevent over-damping of the numerical solution, corresponding to the criterion

h � csts, here implying � 240 particles.

sents the smallest length of the problem that must be resolved

numerically in order to capture the physics of the process. If

the spatial de-phasing between the gas and the dust is under-

resolved, the differential velocity between the gas and the dust

is artificially larger than the theoretical one, leading to a non-

physical over-dissipation of the kinetic energy of the system.

The resolution criterion for resolving the differential drag is

therefore of the form

h � csts. (31)

Importantly, this resolution requirement is a critical issue for

any numerical method, SPH or grid-based. In general, the

spatial resolution criterion is

∆ � csts, (32)

where ∆ is the resolution length.

VI. Application to planet formation

The gas and dust SPH algorithm described above has been

used in an astrophysical context for studying the early stages

of planet formation [14]. Briefly, when a planet forms into a

protoplanetary discs, its gravitational influence strongly affects

the density profile of the surrounding gas. Specifically, the

planet creates pressure maxima (e.g. zones where the velocities

Enormous computational cost or massive artificial dissipation of the energy

Deficiency of multifluid algorithms, whatever the numerical method used
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of the mixture. Using the identities

vg = v − ρd
ρ
∆v, (9)

vd = v +
ρg

ρ
∆v, (10)

Eqs. 1 – 4 become
∂ρ

∂t
+ ∇. (ρv) = 0, (11)

∂v
∂t
+ (v.∇)v = f −

∇Pg
ρ
−
1
ρ
∇

(

ρgρd

ρ
∆v2
)

, (12)

∂

∂t

(

ρd

ρg

)

+ v.∇
(

ρd

ρg

)

= −
ρ

ρ2g
∇ ·

(

ρgρd

ρ
∆v
)

, (13)

∂∆v
∂t
+ (v · ∇)∆v = −

∆v
ts
+
∇Pg
ρg

−(∆v · ∇)v + 1
2
∇

(

ρd − ρg

ρd + ρg
∆v2
)

. (14)

The evolution of the gas internal energy becomes

∂u
∂t
+ (v · ∇)u = −

Pg
ρg
(∇.v) −

Pg
ρg
∇.

(

ρd

ρ
∆v
)

+
ρd

ρ
(∆v.∇) u (15)

+
ρgρd

ρ

∆v2

ts
,

or equivalently, the entropy evolves according to

T
∂s
∂t
+ (v · ∇)s =

ρd

ρ
(∆v.∇) s +

ρgρd

ρ

∆v2

ts
, (16)

where T is the local gas temperature. As expected, the differen-
tial velocity between the gas and the dust is a dissipative and irre-
versible source of energy.

In the Lagrangian frame comoving with the fluid barycentre,
the equations can be simplified further using the total time deriva-
tive
d
dt
=
∂

∂t
+ v.∇, (17)

where the evolution of the position, X, of a fluid particle of this
single fluid is given by dX/dt = v. Thus Eqs. 11–14 simplify to

dρ
dt

= −ρ(∇.v), (18)

dv
dt

= f −
∇Pg
ρ
−
1
ρ
∇

(

ρgρd

ρ
∆v2
)

, (19)

d
dt

(

ρd

ρg

)

= −
ρ

ρ2g
∇ ·

(

ρgρd

ρ
∆v
)

, (20)

d∆v
dt

= −
∆v
ts
+
∇Pg
ρg
− (∆v · ∇)v +

1
2
∇

(

ρd − ρg

ρd + ρg
∆v2
)

, (21)

while the internal energy equation is given by
du
dt
= −

Pg
ρg
(∇.v) −

Pg
ρg
∇

(

ρd

ρ
∆v
)

+
ρd

ρ
(∆v.∇) u +

ρgρd

ρ

∆v2

ts
. (22)

Throughout this section, we have assumed that the volume oc-
cupied by the dust grains is negligible. For astrophysical applica-
tions — with micron to kilometre-sized grains in simulations on
AU or parsec scales — this is an extremely good approximation,
but it can be important in non-astrophysical problems (see Fan &
Zhu (1998) for various examples). Thus, for completeness we give
the one fluid equations generalised to finite volume grains in Ap-
pendix A.

2.3 Advantages of the one fluid approach

While mathematically equivalent to Eqs. 1 – 6, the barycentric for-
mulation of the dusty gas equations has a number of key advantages
for the numerical solution of dust-gas mixtures. In particular:

(i) The equations can be solved on a single fluid that moves with
the barycentric velocity v, rather than requiring two fluids. In turn,
this implies only one resolution scale in numerical models, avoid-
ing the problems associated with mismatched spatial resolutions
discussed above (c.f. Price & Federrath 2010; Ayliffe et al. 2012;
Laibe & Price 2012a).
(ii) The form of the continuity and acceleration equations

(Eqs. 18 and 19) are similar or identical to the usual equations of
hydrodynamics, with a minor modification to the pressure gradient
and one additional term in the acceleration equation.
(iii) The dust-to-gas ratio, the critical parameter in most as-

trophysical problems, is explicitly evolved. Furthermore, both the
physics producing a change in the dust-to-gas ratio, and the limit in
which the dust-to-gas ratio is constant, are clear.
(iv) Drag terms between the two fluids do not have to be explic-

itly evaluated, meaning treatment of complicated or non-linear drag
regimes is straightforward.
(v) The evolution equation for ∆v (Eq. 21) is analogous to the

induction equation for magnetohydrodynamics or the evolution of
vorticity in incompressible flows, with additional source (∇Pg/ρg)
and decay (−∆v/ts) terms.
(vi) Implicit treatment of the decay term in Eq. 21 in the limit of

ts → 0 can be trivially achieved using operator splitting, since the
exact solution is known.
(vii) The equations can be simplified further in the limit of

strong drag/short stopping times, as we discuss below.

While Eqs. 18, 19 and 21 have been used in a reduced form
(assuming an incompressible fluid) for analytic studies of the
streaming instability in protoplanetary discs (Youdin & Goodman
2005; Jacquet et al. 2011), Eq. 20 — the most important equation
in the barycentric formulation — has to our knowledge not been
derived elsewhere.

2.4 Physical interpretation

To understand the physical meaning of the different equations of
the system, it should be first noted that the densities of linear mo-
mentum p and kinetic energy e of the mixtures are

p = ρv, (23)

e =
1
2
ρv2 +

1
2
ρgρd

ρ
∆v2, (24)

implying that Eq. 18 is a standard equation of mass conservation
for the total mass of the system.

Eq. 19 is also similar to a single fluid momentum conservation
equation, except that 1) the gas pressure gradient is divided by the
total density of the fluid, thus taking into account the inertia of the
dust and 2) the dissipated energy from the differential velocity be-
tween the fluid acts like a kinetic pressure for the fluid. Indeed, in
Eq. 24 the term 1

2ρv
2 is the dynamical kinetic energy of the mixture,

while the second term is the density of energy internal to the mix-
ture (which is equivalent to a pressure). The effect of these terms
on the evolution of the fluid vorticity ω = ∇ × v is given by the

Total mass conserved

Composition evolution

Additional anisotropic pressure

Trivial dissipation term

Energy conserved
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In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust

to gas ratio ρd/ρg are the natural quantities to study the evolution
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where T is the local gas temperature. As expected, the differen-

tial velocity between the gas and the dust is a dissipative and irre-

versible source of entropy.

In the Lagrangian frame comoving with the fluid barycentre,

the equations can be simplified further using the total time deriva-

tive

d

dt
=
∂
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+ v · ∇, (17)

such that the evolution of the position, X, of a fluid particle of this

single fluid is given by dX/dt = v. Thus Eqs. 11–14 simplify to

dρ
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1
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(

ρd − ρg
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while the internal energy equation is given by

du

dt
= −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

. (22)

The specific entropy of the gas evolves according to

ds

dt
=
ρd

Tρ

∆v2

ts

, (23)

showing that the drag is the only source of entropy in the mixture.

Throughout this section, we have assumed that the volume oc-

cupied by the dust grains is negligible. For astrophysical applica-

tions — with micron to kilometre-sized grains in simulations on

AU or parsec scales — this is an extremely good approximation, but

it can be important in non-astrophysical problems (see Fan & Zhu

(1998) for various examples). For completeness we give the one

fluid equations generalised to finite volume grains in Appendix A.

It should be noted that while physical, the use of the dust-to-

gas ratio introduces an artificial singularity in the equations when

the mixture is only made of dust (ρg = 0). A convenient way to

overcome this difficulty is to use the dust fraction ε = ρd/ρ instead

of the dust-to-gas ratio. The gas and the dust densities are calculated

according to ρg = (1 − ε) ρ and ρd = ερ respectively. Eqs. 18 – 22

become:

dρ

dt
= −ρ(∇ · v), (24)

dε

dt
= −

1

ρ
∇ ·
[

ε (1 − ε) ρ∆v
]

, (25)

dv

dt
= −

∇Pg

ρ
−

1

ρ
∇ ·
[

ε (1 − ε) ρ∆v∆v
]

+ f, (26)

d∆v

dt
= −

∆v

ts

+
∇Pg

(1 − ε) ρ
− (∆v · ∇)v +

1

2
∇
[

(2ε − 1)∆v2
]

,(27)

du

dt
= −

Pg

(1 − ε) ρ
∇ · (v − ε∆v) + ε (∆v · ∇) u + ε

∆v2

ts

, (28)

where the stopping time ts reads

ts =
ε (1 − ε) ρ

K
. (29)

2.3 Advantages of the one fluid approach

While mathematically equivalent to Eqs. 1 – 6, the barycentric for-

mulation of the dusty gas equations has a number of key advantages

for the numerical solution of dust-gas mixtures. In particular:

(i) The equations can be solved on a single fluid that moves with

the barycentric velocity v, rather than requiring two fluids. In turn,

this implies only one resolution scale in numerical models, avoid-

ing the problems associated with mismatched spatial resolutions

discussed above (c.f. Price & Federrath 2010; Ayliffe et al. 2012;

Laibe & Price 2012a).

(ii) The form of the continuity and acceleration equations

(Eqs. 18 and 19) are similar or identical to the usual equations of

hydrodynamics, with a minor modification to the pressure gradient

and one additional term in the acceleration equation.

(iii) The dust-to-gas ratio, the critical parameter in most as-

trophysical problems, is explicitly evolved. Furthermore, both the

physics producing a change in the dust-to-gas ratio, and the limit in

which the dust-to-gas ratio is constant, are clear.

(iv) Drag terms between the two fluids do not have to be explic-

itly evaluated, meaning treatment of complicated or non-linear drag

regimes is straightforward.

(v) The evolution equation for ∆v (Eq. 21) is analogous to the

induction equation for magnetohydrodynamics or the evolution of

vorticity in incompressible flows, with additional source (∇Pg/ρg)

and decay (−∆v/ts) terms.

(vi) Implicit treatment of the decay term in Eq. 21 in the limit of

ts → 0 can be trivially achieved using operator splitting, since the

exact solution is known.

(vii) The equations can be simplified further in the limit of

strong drag/short stopping times, as we discuss below.

Eqs. 18, 19 and 21 have been used in a reduced form (as-

suming an incompressible fluid) for analytic studies of instabilities
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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drag regimes (corresponding to small grains), we found two limi-
tations which lead to a prohibitive computational cost: 1) the dras-
tically small time steps required for the numerical stability of ex-
plicit schemes or the complexity of the implicit schemes involved,
and less trivially 2) a high spatial resolution required to resolve the
differential velocity between the gas and the dust in order to simu-
late the correct physical dissipation rate. The latter occurs because
even if the differential velocity between the fluids is damped after
a few stopping times ts, the gas pressure causes a small spatial de-
phasing between the gas and dust. When the resolution is too low
(∆x ! tscs, see LP12a), the dephasing from numerical simulations
is artificially too large and the energy is over-dissipated.

This means that it is essentially impossible to simulate small
grains accurately using the two fluid approach with standard flu-
ids codes, since both infinitely small time steps and an infinitely
large spatial resolution are required in the limit ts → 0. Worse still,
this limit corresponds to the rather obvious limit in which the two
fluids are perfectly coupled and move precisely as a single fluid
(albeit with a sound speed modified by the dust to gas ratio). For
astrophysics this means that it is not currently possible to simulate
the small, micron to cm sized grains accurately with any existing
dust-gas code, and certainly not possible to simulate both small and
large (metre-to-planetesimal sized) grains with the same technique.

In this paper, we show how the equations describing gas-dust
mixtures can be reformulated to represent a single fluid moving
with the barycentre of the mixture, leading to a set of equations only
slightly modified from the usual equations of gas dynamics, with
additional evolution equations for the differential velocity and the
dust-to-gas ratio. This approach, though initially developed with
the large drag/small grain regime in mind, turns out to be both gen-
eral and elegant, since the important physical quantities of the mix-
ture are computed directly, avoiding all of the artificial complica-
tions which arise in the two-fluid treatment.

The paper is structured as follows: The equations for the evo-
lution of the single fluid are derived in Sec. 2. This set of equations
is completely general and can be used to simulate both large and
small grains. In Sec. 3, we show how they can be further simpli-
fied in the specific limit of small grains and subsonic differential
motion, leading to the standard equations of gas dynamics (with a
modified sound speed), coupled with an advection-diffusion equa-
tion for the dust-to-gas ratio. In Sec. 4 we demonstrate that the
main physical effects associated with dust, including linear waves,
shocks and the streaming instability, can all be captured with this
simplified approach, and give the appropriate criterion for the use
of the simplified formulation in numerical codes.

2 SINGLE FLUID MODEL

2.1 Two fluid equations

In astrophysical problems, dust and gas mixtures are usually treated
by two continuous phases that interact via a drag term (see e.g.
LP12a for a particular implementation). The dust fluid is treated as
a pressureless fluid. Using explicit notations, the equations for the

conservation of density and momentum are therefore given by:

∂ρg

∂t
+ ∇.
(

ρgvg
)

= 0, (1)

∂ρd

∂t
+ ∇. (ρdvd) = 0, (2)

ρg

(

∂vg
∂t
+ vg.∇vg

)

= ρgf + K(vd − vg) − ∇Pg, (3)

ρd

(

∂vd
∂t
+ vd.∇vd

)

= ρdf − K(vd − vg), (4)

where K is the drag coefficient which is a function of the local gas
and dust parameters, as well as the differential velocity between
the fluids (see LP12b for an extensive discussion of drag regimes).
In the following, we will denote cs the gas sound speed such as
δPg = c2sδρg and ts, the typical drag stopping time given by

ts ≡
ρdρg

K
(

ρg + ρd
) . (5)

Some studies adopt tstop = ρd/K for the stopping time. We use the
definition given by Eq. 5 since it is more physically relevant as we
will see hereafter. Qualitatively, two limiting behaviours occur for
the mixture’s evolution, depending on the value of ts compared to
the other physical typical time. If ts is large (weak drag, i.e. large
grains in astrophysics), the drag dissipate slowly the differential
kinetic energy between the phases and is essentially perturbative.
From a numerical point of view, drag terms can be integrated by a
straightforward explicit integration. If ts is small (strong drag, i.e.
small grains in astrophysics), the drag controls the evolution of the
mixture since momentum between the two phases is almost instan-
taneously exchanged. The behaviour of the mixture becomes less
intuitive. In LP12a, we have illustrated the behaviour of a gas and
dust mixture at strong drag regimes with the dustywave problem.
After a typical time ts, the initial differential velocity between the
fluids is damped and the barycentre of the fluid propagates with
a modified sound speed c̃s (see below, Eq. 43). However, since ts
remains finite, the gas pressure makes the gas propagate a small
distance csts with respect to the dust and both waves in the gas and
the dust are slightly dephased. This small dephasing is then damped
by the drag but regenerated by the pressure, leading to a dissipation
in the evolution of the mixture, while both phases remain closely
coupled.

The evolution equation for the specific internal energy of the
gas is given by
∂u
∂t
+ (vg · ∇)u = −

Pg
ρg
(∇ · vg) + K(vd − vg)2, (6)

the last term representing the dissipation of heat due to drag.

2.2 One-fluid model

Without loss of generality, Eqs. 1 – 4 and 6 can be reformulated as
a single fluid, moving with the barycentric velocity,

v ≡
ρgvg + ρdvd
ρg + ρd

, (7)

and evolving the differential velocity between the two phases, ∆v,
defined according to

∆v ≡ vd − vg. (8)

In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust
to gas ratio ρd/ρg are the natural quantities to study the evolution
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In the barycentric frame, the total density ρ ≡ ρg + ρd and the dust

to gas ratio ρd/ρg are the natural quantities to study the evolution

of the mixture. Using the identities

vg = v −
ρd

ρ
∆v, (9)

vd = v +
ρg

ρ
∆v, (10)

Eqs. 1 – 4 become

∂ρ

∂t
+ ∇ · (ρv) = 0, (11)

∂v

∂t
+ (v · ∇)v = f −

∇Pg

ρ
−

1

ρ
∇ ·

(

ρgρd

ρ
∆v∆v

)

, (12)

∂

∂t

(

ρd

ρg

)

+ v · ∇

(

ρd

ρg

)

= −
ρ

ρ2
g

∇ ·

(

ρgρd

ρ
∆v

)

, (13)

∂∆v

∂t
+ (v · ∇)∆v = −

∆v

ts

+
∇Pg

ρg

−(∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

. (14)

The evolution of the gas internal energy becomes

∂u

∂t
+ (v · ∇)u = −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

, (15)

or equivalently, the entropy evolves according to

T
∂s

∂t
+ (v · ∇)s =

ρd

ρ
(∆v · ∇) s +

ρd

ρ

∆v2

ts

, (16)

where T is the local gas temperature. As expected, the differen-

tial velocity between the gas and the dust is a dissipative and irre-

versible source of entropy.

In the Lagrangian frame comoving with the fluid barycentre,

the equations can be simplified further using the total time deriva-

tive

d

dt
=
∂

∂t
+ v · ∇, (17)

such that the evolution of the position, X, of a fluid particle of this

single fluid is given by dX/dt = v. Thus Eqs. 11–14 simplify to

dρ

dt
= −ρ(∇ · v), (18)

dv

dt
= f −

∇Pg

ρ
−

1

ρ
∇ ·

(

ρgρd

ρ
∆v∆v

)

, (19)

d

dt

(

ρd

ρg

)

= −
ρ

ρ2
g

∇ ·

(

ρgρd

ρ
∆v

)

, (20)

d∆v

dt
= −

∆v

ts

+
∇Pg

ρg

− (∆v · ∇)v +
1

2
∇

(

ρd − ρg

ρd + ρg

∆v2

)

, (21)

while the internal energy equation is given by

du

dt
= −

Pg

ρg

(∇ · vg) +
ρd

ρ
(∆v · ∇) u +

ρd

ρ

∆v2

ts

. (22)

The specific entropy of the gas evolves according to

ds

dt
=
ρd

Tρ

∆v2

ts

, (23)

showing that the drag is the only source of entropy in the mixture.

Throughout this section, we have assumed that the volume oc-

cupied by the dust grains is negligible. For astrophysical applica-

tions — with micron to kilometre-sized grains in simulations on

AU or parsec scales — this is an extremely good approximation, but

it can be important in non-astrophysical problems (see Fan & Zhu

(1998) for various examples). For completeness we give the one

fluid equations generalised to finite volume grains in Appendix A.

It should be noted that while physical, the use of the dust-to-

gas ratio introduces an artificial singularity in the equations when

the mixture is only made of dust (ρg = 0). A convenient way to

overcome this difficulty is to use the dust fraction ε = ρd/ρ instead

of the dust-to-gas ratio. The gas and the dust densities are calculated

according to ρg = (1 − ε) ρ and ρd = ερ respectively. Eqs. 18 – 22

become:

dρ

dt
= −ρ(∇ · v), (24)

dε

dt
= −

1

ρ
∇ ·
[

ε (1 − ε) ρ∆v
]

, (25)

dv

dt
= −

∇Pg

ρ
−

1

ρ
∇ ·
[

ε (1 − ε) ρ∆v∆v
]

+ f, (26)

d∆v

dt
= −

∆v

ts

+
∇Pg

(1 − ε) ρ
− (∆v · ∇)v +

1

2
∇
[

(2ε − 1)∆v2
]

,(27)

du

dt
= −

Pg

(1 − ε) ρ
∇ · (v − ε∆v) + ε (∆v · ∇) u + ε

∆v2

ts

, (28)

where the stopping time ts reads

ts =
ε (1 − ε) ρ

K
. (29)

2.3 Advantages of the one fluid approach

While mathematically equivalent to Eqs. 1 – 6, the barycentric for-

mulation of the dusty gas equations has a number of key advantages

for the numerical solution of dust-gas mixtures. In particular:

(i) The equations can be solved on a single fluid that moves with

the barycentric velocity v, rather than requiring two fluids. In turn,

this implies only one resolution scale in numerical models, avoid-

ing the problems associated with mismatched spatial resolutions

discussed above (c.f. Price & Federrath 2010; Ayliffe et al. 2012;

Laibe & Price 2012a).

(ii) The form of the continuity and acceleration equations

(Eqs. 18 and 19) are similar or identical to the usual equations of

hydrodynamics, with a minor modification to the pressure gradient

and one additional term in the acceleration equation.

(iii) The dust-to-gas ratio, the critical parameter in most as-

trophysical problems, is explicitly evolved. Furthermore, both the

physics producing a change in the dust-to-gas ratio, and the limit in

which the dust-to-gas ratio is constant, are clear.

(iv) Drag terms between the two fluids do not have to be explic-

itly evaluated, meaning treatment of complicated or non-linear drag

regimes is straightforward.

(v) The evolution equation for ∆v (Eq. 21) is analogous to the

induction equation for magnetohydrodynamics or the evolution of

vorticity in incompressible flows, with additional source (∇Pg/ρg)

and decay (−∆v/ts) terms.

(vi) Implicit treatment of the decay term in Eq. 21 in the limit of

ts → 0 can be trivially achieved using operator splitting, since the

exact solution is known.

(vii) The equations can be simplified further in the limit of

strong drag/short stopping times, as we discuss below.

Eqs. 18, 19 and 21 have been used in a reduced form (as-

suming an incompressible fluid) for analytic studies of instabilities

c© 2014 RAS, MNRAS 000, 1–11
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Figure 3. The dustywave test, showing velocity of gas (filled circles) and dust (open circles) after 4.5 periods on the SPH particles with the two-fluid

formulation (left) and the one-fluid formulation (right), compared to the analytic solution given by the solid and dashed red lines for the gas and dust,

respectively. In the two fluid case the gas and dust are represented by 2 × 100 of particles, whereas in the one fluid formulation the two velocities are carried

on the same set of 100 particles. The one fluid formulation solves the over-damping problem at low resolution present in the two fluid formulation at high drag

(compare bottom two panels of each Figure). The slight phase error in the gas velocity in the two fluid formulation, caused by interpolation errors, is also not

present in the one fluid case (compare top two panels of each Figure).

and one set given the density, mass and velocity of the dust:

ρd,a = �aρa, (102)

md,a = �ama, (103)

vd,a = va + (1 − �a)∆va, (104)

ua = 0. (105)

This is the procedure we use in this paper, implemented in splash

(Price 2007), which enables a direct comparison to the two-fluid

formulation.

4.2.3 Results

Fig. 3 compares the results obtained with the two-fluid algorithm

and the one-fluid algorithm on the dustywave problem, in each case

shown against the analytic solution derived in Laibe & Price (2011)

for both the gas and the dust phases. The drag coefficient is varied

systematically from weak (K = 0.001) to strong (K = 1000) drag

regimes. For the one-fluid simulations the number of SPH particles

is fixed to 100, with 2 × 100 required for the two fluid calcula-

tions. The solutions of the dustywave problem can be seen to be

well reproduced by the one-fluid algorithm. The accuracy is of or-

der a few percent in the L1 norm for every drag regime considered,

consistent with a second order integration scheme. Importantly, the

direct comparison with the results obtained with the two-fluid al-

gorithm (comparing left and right panels) shows that the spatial

resolution criterion required for strong drag regimes is no longer

needed. With 100 SPH particles of each type per wavelength, the

criterion h < csts gives Kl � 50 as the maximum drag coefficient

that can be simulated by the two fluid algorithm. The left panel of

Fig. 3 shows that the wave amplitude is already incorrectly repro-

duced with the two-fluid method for K = 100 and that the wave

in completely over-damped for K = 1000 (see Sect. 4.2 of Laibe

& Price (2012a) for a quantitative discussion on the rate of energy

over-dissipated in under-resolved simulations). To handle the case

K = 1000, we would need to have used 2 × 2000 = 4000 particles

with the two-fluid algorithm. There is no resolution requirement in

the one-fluid algorithm except the usual need to resolve a wave-

length by ∼ 8–10 particles, reducing the computational cost by a

factor of ∼ 400 in 1D. In 3D, the computational cost is reduced by

a factor of 400
3 = 64 million: Accurate 3D simulations with the

two-fluid algorithm at high drag would be inconceivable. An addi-

tional gain results from the fact that the implicit integration scheme

for two-fluids converges slowly and is of limited utility when the

drag is very strong (Laibe & Price 2012b). An additional factor (of

� 100) is gained in the one-fluid algorithm from the ability to use

an efficient implicit integration scheme, as described in Sect. 3.9.2.

This implies a total improvement in speed of 6.4 billion (this is not

a misprint) in 3D.

4.3 dustyshock

The dustyshock problem involves the propagation of a shock in a

dust and gas mixture. The problem is simplified by using a linear

drag regime with constant drag term K, no heat transfer between

the phases and no viscosity other than the standard shock-capturing

terms used in SPH. After a transient phase, the shock is followed

by a stationary phase that consists of the solution for a pure gas

solution propagating at a modified γ and sound speed, as described

in Laibe & Price (2012a). In the dustyshock problem the advec-

tion of the mixture and the treatment of the discontinuity, which

involves the SPH artificial viscosity terms, bring an additional com-

plexity compared to the dustybox and the dustywave problems. As

c� 2014 RAS, MNRAS 000, 1–18
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Figure 5. Renormalised migration velocities as a function of the relative dust fraction φ1 in a two-dust-phase mixture. Positive velocities indicate outward
migration. The left panel represents a typical initial situation for a protoplanetary disc. The parameters are set to ρ0 = 1, ε0 = 0.01, Ω = 1 and individual drag
timescales t1 = 10−3, t2 = 10−2. The right panel mimics a situation where grains have grown and have concentrated due to settling (ε0 = 0.01, t1 = 0.1, t2 = 1).
The gas, the first (smaller grains) and the second (larger grains) dust phases are represented by black dashed, red dotted and red dashed lines respectively. As
an indication, thin (thick) solid lines represent the gas and the dust velocities in a mixture made of the second (first) dust species only, i.e. φ1 = 0 (φ1 = 1).
In the first configuration (left panel), grains are migrating inwards, in accordance with the single dust population case. Only a negligible dependence on the
relative dust fraction is observed. In the second configuration (right panel), the smaller grains show outward migration when the relative dust fraction is ! 0.6,
with the velocity being of order the optimal migration velocity for grains in discs.

which are the expressions obtained in the original derivation of
Nakagawa et al. (1986) in the case n = 1 (usually, the factor
(1 − ε) t1 is replaced by the stopping time ts). Dust loses angu-
lar momentum to the gas, implying that dust grains migrate in-
wards and the gas migrates outwards. Enforcing ε = 0 directly in
Eqs. 160–163 provides the usual expression of migration for indi-
vidual isolated grains.

3.4.3 Outward migration of dust particles

Behaviours specific to multiple dust distributions are observed
when the relative composition between the dust species is varied.
In particular, an interesting limit consists of a situation where one
of the two phases is infinitely diluted. As an example, we shall fo-
cus hereafter on the case φ1 → 0, since the two dust populations
are symmetric. In this case, the inertia of the first dust phase is rig-
orously zero and grains behave like isolated individual particles.
Thus, Eq. 161 reduces to

vd1x = −
(1 − ε)

[

t1 − εt2 + (1 − ε)Ω2t1t22
]

(

1 +Ω2t21
) (

1 + (1 − ε)2Ω2t22
) . (166)

As shown by Eq. 166, vd1x depends on t1, but also on t2 since the
gas is dragged by the second dust species. The sign of vd1x is given
by the sign of the function fε defined by

fε (T1, T2) = T1 − εT2 + (1 − ε) T1T 22 , (167)

where T1 and T2 are the individual Stokes numbers of each species,
defined by t1Ω = T1 and t2Ω = T2.

Fig. 4 summarises the detailed study of the function fε . The
important result is that for a range of values of (T1,T2) which de-
pends on the dust fraction ε, fε < 0, implying that the grains are
migrating outwards. Since this result is obtain at the limit φ1 → 0,
it implies that there is a continuous range for increasing values of φ1
for which this result holds. Bai & Stone (2010) observed this out-
wards migration for small grains as a result of their multiple grain
size simulations. From Eq. 167, outward migration occurs when

T1 < gε (T1,T2) =
εT2

1 + (1 − ε) T 22
. (168)

A necessary condition for this condition to be satisfied is (see
Fig. 4):

T1 < gε (T1,T2) < εT2 < T2. (169)

As a consequence, outward migration occurs only in the dust pop-
ulation with the smallest grain size, i.e. the one with the smallest
value of tk, which is the most efficiently dragged. Physically, the
gas migrates outwards as an effect of the backreaction from the in-
ward migration of the dense phase of large grains. Then, small dust
grains efficiently couple to the gas and migrate outwards, rather
than migrating inward as if it would be expected if they were the
only dust population in the mixture.

The largest possible value T1c of outwardly migrating grains
corresponds to the maximum of the function gε . This is an increas-
ing function of the dust fraction:

T1c =
ε

2
√
1 − ε

, (170)

which is reached at T2c = (1 − ε)−1/2. Thus, at small values of ε (i.e.
ε $ 1), only very small grains can migrate outwards. However,
when the dust-to-gas ratio becomes of order unity (ε % 0.5), T1c
becomes of order unity. Therefore, grains of intermediate size (i.e.
having a Stokes number of order unity) can migrate outwards. In
theory, very large values of T1c can be reached in the limit ε → 1,
but those regimes are not relevant for planet formation.

Fig. 5 compares the renormalised gas and dust velocities ob-
tained for a single and two-dust-phase mixture as a function of the
relative dust fraction φ1. Radial velocities are positive when the
migration is outward. The parameters of the mixture are ρ0 = 1,
ε0 = 0.01, Ω = 1 and t1 = 10−3, t2 = 10−2 (left panel) or ε0 = 0.5,
t1 = 0.1, t2 = 1 (right panel). Those two sets of parameters are
chosen to mimic a typical dust distribution in a protoplanetary disc
before and after the growth and settling stage. In the first case, when
the dust fraction is still small enough and the grains are small, each
grains phase behaves almost as in the single grain case: particles
migrate inwards with velocities that are almost identical to the ones
found in the case n = 1. Corrections due to the change of relative
dust composition are essentially negligible. More interesting is the
case which mimics a stage where dust grains have grown and are

One fluid with one gas phase + N dust phases.

All the dust phases have to be treated simultaneously

≠ +
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2 Price & Laibe

2 THE DIFFUSION APPROXIMATION FOR DUST

2.1 Continuum equations

2.1.1 General case

In LP14a we showed that, to first order in ts/T , where T is the

timescale for a sound wave to propagate over a typical distance L,

the equations describing the evolution of a dust-gas mixture can be

written in the form

dρ

dt
= −ρ(∇ · v), (1)

dv

dt
= (1 − ε)fg + εfd + f, (2)

dε

dt
= −

1

ρ
∇ ·
[

ε(1 − ε)ρts∆f
]

, (3)

du

dt
= −

P

ρg

(∇ · v) − εts (∆f · ∇) u + Λheat − Λcool, (4)

where ρ is the total density of the mixture, ε ≡ ρd/ρ is the mass

fraction of dust, f represents accelerations acting on both compo-

nents of the fluid while fg and fd represent the accelerations acting

on the gas and dust components, respectively, ∆f ≡ fd − fg is the

differential acceleration between the gas and dust, u is the specific

thermal energy of the gas, P is the gas pressure, and Λheat and Λcool

are additional heating and cooling terms, respectively2 . The veloc-

ity v is the barycentric velocity of the mixture, defined as

v ≡
ρdvd + ρgvg

ρ
= εvd + (1 − ε)vg, (5)

In the so-called terminal velocity approximation (Youdin & Good-

man 2005; Chiang 2008; Barranco 2009; Lee et al. 2010; Jacquet

et al. 2011) assumed in Equations 1–4, ∆f is rapidly balanced by

the drag. Thus, the time dependence of the differential velocity can

be ignored, and the differential velocity between the gas and dust is

given by

∆v ≡ (vd − vg) $ ts∆f. (6)

This also implies that the anisotropic pressure term in the momen-

tum equation (see LP14a) should be neglected. The terminal veloc-

ity approximation is valid when the drag coefficient K is large such

that the stopping time,

ts ≡
ρdρg

K(ρd + ρg)
=
ε(1 − ε)ρ

K
, (7)

is short compared to the timestep. Various physical prescriptions

for K in the Epstein and Stokes drag regimes are given in Laibe &

Price (2012b) but the essential point is that K is inversely propor-

tional to the grain size, being large for small grains.

The differential acceleration ∆f depends on the physics in the

problem, i.e. the forces affecting the gas but not the dust, which

may include pressure, magnetic and other forces. In our numeri-

cal implementation we consider the contributions from the pressure

gradient (see below) and also artificial viscosity term, which should

likewise affect the gas only.

2 The astute reader will notice that Eq. 4 differs from the expression we

gave for the “first order approximation” in LP14a. The drag heating term,

ε∆v2/ts, is clearly negligible in the terminal velocity approximation, but we

also find that the PdV work term should involve ∇ · v rather than ∇ · vg. We

find both of these approximations necessary for the numerical scheme to

conserve total energy as it is defined in the terminal velocity approximation

(Eq. 38).

2.1.2 Hydrodynamics

For the simple case of hydrodynamics, the only force is the pressure

gradient, giving

fg = −
∇P

ρg

; fd = 0, (8)

and thus

∆f =
∇P

ρg

, (9)

giving Equations 1–4 in the form

dρ

dt
= −ρ(∇ · v), (10)

dv

dt
= −

∇P

ρ
+ f, (11)

dε

dt
= −

1

ρ
∇ · (εts∇P) , (12)

du

dt
= −

P

ρg

(∇ · v) −
εts

ρg

(∇P · ∇u) + Λheat − Λcool. (13)

These are similar to the usual equations of hydrodynamics in the

absence of dust. The only differences are the additional equation

that describes the evolution of the dust fraction; the modifications

to the thermal energy equation; and the fact that the pressure is

related to the gas density only, not the total density (see below;

this gives the zeroth order effect of a ‘heavy fluid’, as discussed in

LP14a).

2.1.3 Equation of state

The equation set is closed by the usual equation of state specify-

ing the gas pressure P in terms of the gas density and temperature.

Unless otherwise specified in this paper we assume an adiabatic

equation of state, i.e.

P = (γ − 1)ρgu = (γ − 1)(ε − 1)ρu, (14)

where γ is the usual adiabatic constant.

2.2 Timestepping

The main change when adopting the formulation given above com-

pared to a standard hydrodynamics code is the addition of the

diffusion equation for the dust fraction (12). In principle this in-

troduces an additional constraint on the timestep when the diffu-

sion coefficient is large. Assuming an isothermal equation of state

P = c2
sρg = c2

s (1 − ε)ρ and a constant density, (12) can be written

as a simple diffusion equation for ε

dε

dt
= ∇ · (η∇ε) , (15)

where the diffusion coefficient η ≡ εtsc
2
s . This implies a stability

constraint of the form

∆t < ∆tε = C0

h2

η
= C0

h2

εtsc2
s

, (16)

where C0 is a dimensionless safety factor of order unity and h is the

resolution length (the smoothing length in SPH). We can rewrite

(16) as

∆t < C

(

∆tCour

ts

)2

ts, (17)
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2.4.9 Drag coefficient

In general the drag coefficient K is a function of the properties of
both the gas and dust. For example in the linear Epstein regime
relevant to dilute gases in the limit of low Mach numbers, the coef-
ficient Kak is given by

Kak =
4
3
π

�
8
πγ

ρ̂k

md

ρ̂a

θa
s

2
cs,a, (87)

where s is the grain radius, md is the grain mass, γ is the adia-
batic index, cs,a is the gas sound speed. Since the basic dust-gas
algorithm described above is insensitive to the specific form of the
drag, we consider only constant drag coefficients in this paper in
order to benchmark the method. The detailed implementation of a
full range of both linear and non-linear physical drag formulations
is considered in Paper II.

3 TIMESTEPPING

3.1 Empirical timestep criterion

The drag terms impose an additional constraint on the timestep ∆t,
such that it has to be smaller than a critical value ∆tc for an explicit
scheme (e.g. Leapfrog) to remain stable. Empirically, Monaghan &
Kocharyan (1995) use the criterion:

∆t < min
� ρ

K

�
, (88)

which is essentially the minimum of the drag stopping time taken
over all of the SPH particles.

3.2 Von Neumann stability analysis

A more precise criterion can be derived by considering the stability
of a simple explicit scheme such as the Forward Euler method. We
consider the evolution of the drag terms over a single drag timetstep
∆t, calculating the velocities at the timestep n+1 from the velocities
at the timestep n. Considering only the time-discretisation of the
equations, we have

v
n+1
g − v

n

g

∆t
= − K

ρ̂g

�
vg − vd

�
, (89)

v
n+1
d − v

n

d

∆t
= +

K

ρ̂d

�
vg − vd

�
, (90)

We then perform a standard Von Neumann analysis, considering a
perturbation of the velocity field with respect to equilibrium at the
timestep m corresponding to a monochromatic plane wave, i.e.

v
m

g = V
m

g e
ikx, (91)

v
m

d = V
m

d e
ikx, (92)

where v
m

g and v
m

d are complex constants and k is the wavenumber.
Substituting Eqs. 91 and 92 into Eqs. 89 and 90 leads to the linear
system

�
Vg

Vd

�n+1

=




1 − ∆t
K

ρ̂g
∆t

K

ρ̂g

∆t
K

ρ̂d
1 − ∆t

K

ρ̂d



�

Vg

Vd

�n
. (93)

The two complex eigenvalues Λ±,a j of the matrixM are given by:

Λ±,ai = 1 − ∆t

2

�
K

ρ̂g
+

K

ρ̂d

�
± ∆t

2

�
K

ρ̂g
+

K

ρ̂d

�
. (94)

The condition for the numerical scheme to remain stable (|Λ−| < 1)
implies a minimum timestep given by

∆t < ∆tc =
ρ̂gρ̂d

K(ρ̂g + ρ̂d)
(≡ ts). (95)

We note that this expression differs slightly to the one suggested by
Monaghan & Kocharyan (1995) (Eq. 88) as it involves the physical

drag stopping time ts — i.e. the typical time to damp the differential
velocity between the gas and the dust fluids — rather than K

ρ . The
timestep of Monaghan & Kocharyan (1995) is thus correct in the
limit where the density of one phase is negligible compared to the
density of the other phase, but becomes erroneous in the case of
two fluids having densities of the same order of magnitude. Note
this would apply to grid codes also.

3.3 SPH explicit timestep

The stability criterion for the full SPH system (and also for other
explicit schemes) is expected to be similar to that derived for the
continuum case (Eq. 95). The main difference is that the drag co-
efficient K is in general only defined on particle pairs rather than
individual particles. We thus take the minimum of Eq. 95 over a
particle’s neighbours, i.e.

∆tc,a = min
k

�
ρ̂aρ̂k

Kak(ρ̂a + ρ̂k)

�
; ∆tc,i = min

b

�
ρ̂bρ̂i

Kbi(ρ̂b + ρ̂i)

�
; (96)

for gas and dust particles, respectively.

3.4 Implicit timestepping

For strong drag regimes, the timestep restriction imposed by
Eq. (96) becomes prohibitive, and an implicit timestepping algo-
rithm is required, as proposed by Monaghan (1997). We use only
explicit timestepping for the tests shown in this paper, with implicit
timestepping methods discussed in detail in Paper II.

4 NUMERICAL TESTS

Despite a number of codes having already been developed for sim-
ulating astrophysical gas-dust mixtures, none have been bench-
marked against a wide range of test problems relevant to astro-
physics. For example, while Monaghan & Kocharyan (1995), Mad-
dison et al. (2003) consider drag on a single dust particle in a box
of gas (similar to our dustybox test below), no waves or shocks are
considered. Similarly Paardekooper & Mellema (2006) benchmark
their algorithm against a single dust-gas shock problem with only a
qualitative solution. Other authors simply check that the timescale
for settling in an accretion disc is roughly consistent (Barrière-
Fouchet et al. 2005) or provide no tests at all (Rice et al. 2004;
Fromang & Nelson 2005; Fromang & Papaloizou 2006). In the ab-
sence of known analytic solutions for simple problems, Johansen
et al. (2007), Miniati (2010) and Bai & Stone (2010) use the lin-
ear growth rates for the streaming instability (Youdin & Goodman
2005) as a test problem, though this is already a complicated prob-
lem.

In this paper we present a comprehensive suite of test prob-
lems designed to investigate all aspects of our algorithm rele-
vant to astrophysics. These we refer to as dustybox, dustywave,
dustyshock, dustysedov and dustydisc. Analytic solutions for the
dustybox and dustywave problems have been derived in Laibe &
Price (2011a), while the solution for dustyshock is known in the
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2 THE DIFFUSION APPROXIMATION FOR DUST

2.1 Continuum equations

2.1.1 General case

In LP14a we showed that, to first order in ts/T , where T is the

timescale for a sound wave to propagate over a typical distance L,

the equations describing the evolution of a dust-gas mixture can be

written in the form

dρ

dt
= −ρ(∇ · v), (1)

dv

dt
= (1 − ε)fg + εfd + f, (2)

dε

dt
= −

1

ρ
∇ ·
[

ε(1 − ε)ρts∆f
]

, (3)

du

dt
= −

P

ρg

(∇ · v) − εts (∆f · ∇) u + Λheat − Λcool, (4)

where ρ is the total density of the mixture, ε ≡ ρd/ρ is the mass

fraction of dust, f represents accelerations acting on both compo-

nents of the fluid while fg and fd represent the accelerations acting

on the gas and dust components, respectively, ∆f ≡ fd − fg is the

differential acceleration between the gas and dust, u is the specific

thermal energy of the gas, P is the gas pressure, and Λheat and Λcool

are additional heating and cooling terms, respectively2 . The veloc-

ity v is the barycentric velocity of the mixture, defined as

v ≡
ρdvd + ρgvg

ρ
= εvd + (1 − ε)vg, (5)

In the so-called terminal velocity approximation (Youdin & Good-

man 2005; Chiang 2008; Barranco 2009; Lee et al. 2010; Jacquet

et al. 2011) assumed in Equations 1–4, ∆f is rapidly balanced by

the drag. Thus, the time dependence of the differential velocity can

be ignored, and the differential velocity between the gas and dust is

given by

∆v ≡ (vd − vg) $ ts∆f. (6)

This also implies that the anisotropic pressure term in the momen-

tum equation (see LP14a) should be neglected. The terminal veloc-

ity approximation is valid when the drag coefficient K is large such

that the stopping time,

ts ≡
ρdρg

K(ρd + ρg)
=
ε(1 − ε)ρ

K
, (7)

is short compared to the timestep. Various physical prescriptions

for K in the Epstein and Stokes drag regimes are given in Laibe &

Price (2012b) but the essential point is that K is inversely propor-

tional to the grain size, being large for small grains.

The differential acceleration ∆f depends on the physics in the

problem, i.e. the forces affecting the gas but not the dust, which

may include pressure, magnetic and other forces. In our numeri-

cal implementation we consider the contributions from the pressure

gradient (see below) and also artificial viscosity term, which should

likewise affect the gas only.

2 The astute reader will notice that Eq. 4 differs from the expression we

gave for the “first order approximation” in LP14a. The drag heating term,

ε∆v2/ts, is clearly negligible in the terminal velocity approximation, but we

also find that the PdV work term should involve ∇ · v rather than ∇ · vg. We

find both of these approximations necessary for the numerical scheme to

conserve total energy as it is defined in the terminal velocity approximation

(Eq. 38).

2.1.2 Hydrodynamics

For the simple case of hydrodynamics, the only force is the pressure

gradient, giving

fg = −
∇P

ρg

; fd = 0, (8)

and thus

∆f =
∇P

ρg

, (9)

giving Equations 1–4 in the form

dρ

dt
= −ρ(∇ · v), (10)

dv

dt
= −

∇P

ρ
+ f, (11)

dε

dt
= −

1

ρ
∇ · (εts∇P) , (12)

du

dt
= −

P

ρg

(∇ · v) −
εts

ρg

(∇P · ∇u) + Λheat − Λcool. (13)

These are similar to the usual equations of hydrodynamics in the

absence of dust. The only differences are the additional equation

that describes the evolution of the dust fraction; the modifications

to the thermal energy equation; and the fact that the pressure is

related to the gas density only, not the total density (see below;

this gives the zeroth order effect of a ‘heavy fluid’, as discussed in

LP14a).

2.1.3 Equation of state

The equation set is closed by the usual equation of state specify-

ing the gas pressure P in terms of the gas density and temperature.

Unless otherwise specified in this paper we assume an adiabatic

equation of state, i.e.

P = (γ − 1)ρgu = (γ − 1)(ε − 1)ρu, (14)

where γ is the usual adiabatic constant.

2.2 Timestepping

The main change when adopting the formulation given above com-

pared to a standard hydrodynamics code is the addition of the

diffusion equation for the dust fraction (12). In principle this in-

troduces an additional constraint on the timestep when the diffu-

sion coefficient is large. Assuming an isothermal equation of state

P = c2
sρg = c2

s (1 − ε)ρ and a constant density, (12) can be written

as a simple diffusion equation for ε

dε

dt
= ∇ · (η∇ε) , (15)

where the diffusion coefficient η ≡ εtsc
2
s . This implies a stability

constraint of the form

∆t < ∆tε = C0

h2

η
= C0

h2

εtsc2
s

, (16)

where C0 is a dimensionless safety factor of order unity and h is the

resolution length (the smoothing length in SPH). We can rewrite

(16) as

∆t < C

(

∆tCour

ts

)2

ts, (17)
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With two fluids:
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With one fluid:

•artificial aggregates when dust concentrates

•huge numerical cost vs energy dissipation for small grains

•issues with grain growth/fragmentation

•no artefact when dust concentrates

•treats easily small grains

•grains distribution localised for grain growth/fragmentation


