Planetary population synthesis

Statistical tests of and constraints on planet formation

The essence of population synthesis

Planet formation: Many processes from many domains

• Gravity, (M)HD, radiation transport, convection, microphysics, ...

(Re. 26) Values

• Large range of temporal and spatial scales

The essence of population synthesis

Planet formation: Many processes from many domains

- Gravity, (M)HD, radiation transport, convection, microphysics, ...
- Large range of temporal and spatial scales, many similar

(Re. 281 Values

Planetary population synthesis

Marleau, Mordasini, Mollière, Klahr, Henning, Alibert, Benz

The essence of population synthesis

Planet formation: Many processes from many domains

• Gravity, (M)HD, radiation transport, convection, microphysics, ...

Veuous

- Large range of temporal and spatial scales, many similar
- \Rightarrow Need to simplify to study cloud-to-planet ("global") formation

The essence of population synthesis

Planet formation: Many processes from many domains

- Gravity, (M)HD, radiation transport, convection, microphysics, ...
- Large range of temporal and spatial scales, many similar
- \Rightarrow Need to simplify to study cloud-to-planet ("global") formation

Diversity of planets: same physics + diversity of initial conditions

Ρ	la	ine	et	formation	&	evolution I	model	

Link disk properties \Rightarrow planet properties

Protoplanetary of Vertical structure Radial structure Disk of solids	Interactions Orbital migration N-body	
Planet Accretion rate Plan Gas envelope Core Atmosphere Atm		etesimal infall e structure ospheric escape

Diversity of planets: same physics + diversity of initial conditions

ļ	Pla	ane	et	for	mation	&	evolution	model	

Link disk properties \Rightarrow planet properties

Protoplanetary of Vertical structure Radial structure Disk of solids	Interactions Orbital migration N-body	
Planet Accretion rate Plan Gas envelope Core Atmosphere Atm		etesimal infall structure ospheric escape

Initial Conditions: Probability distributions

Disk gas mass Disk dust mass Disk lifetime From observations of protoplanetary disks

Comparisons to observations: constraints

The main modules

(Alibert et al. 2005, Fouchet et al. 2011, Mordasini et al. 2012b, Alibert et al. 2013, Fortier et al. 2013,

Dittkrist et al. 2014, Jin et al. 2014, Marleau et al. in prep.)

(Incomplete!) relevant literature

Pioneering and recent work:

- * Ida & Lin et al. (2004–...). Toward a deterministic formation model. I–VII
- * Alibert, Mordasini, Benz & Winisdoerffer (2005). *Models of giant planet formation with migration and disc evolution*

(Incomplete!) relevant literature

Pioneering and recent work:

- * Ida & Lin et al. (2004–...). Toward a deterministic formation model. I–VII
- * Alibert, Mordasini, Benz & Winisdoerffer (2005). *Models of giant planet formation with migration and disc evolution*
- Mordasini, Alibert, Benz et al., (2009–...). Extrasolar planet population synthesis. I–IV, Characterization of exoplanets from their formation. I-II
- Forgan & Rice (2013-...). Towards a Population Synthesis Model of Objects formed by Self-Gravitating Disc Fragmentation and Tidal Downsizing. I
- Thommes et al. (2008), Hasegawa & Pudritz (2013), Galvagni & Mayer (2013), Coleman & Nelson (2014), etc.

Reviews:

- ★ Benz, Alibert, Ida, Lin & Mordasini (2014). Protostars & Planets VI
- ★ Mordasini, Mollière, Dittkrist, Jin & Alibert (2014). J. Astrobiology

(Incomplete!) relevant literature

This talk

Focus on core accretion

Pioneering and recent work:

- * Ida & Lin et al. (2004–...). Toward a deterministic formation model. I-VII
- * Alibert, Mordasini, Benz & Winisdoerffer (2005). *Models of giant planet formation with migration and disc evolution*
- Mordasini, Alibert, Benz et al., (2009–...). Extrasolar planet population synthesis. I–IV, Characterization of exoplanets from their formation. I-II
- Forgan & Rice (2013-...). Towards a Population Synthesis Model of Objects formed by Self-Gravitating Disc Fragmentation and Tidal Downsizing. I
- Thommes et al. (2008), Hasegawa & Pudritz (2013), Galvagni & Mayer (2013), Coleman & Nelson (2014), etc.

Reviews:

- ★ Benz, Alibert, Ida, Lin & Mordasini (2014). Protostars & Planets VI
- ★ Mordasini, Mollière, Dittkrist, Jin & Alibert (2014). J. Astrobiology

Overview

1 Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass–semi-major axis diagram (M_p-a)
- Mass-radius relationship $(M_p R_p)$

Overview

1 Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass-semi-major axis diagram (M_p-a)
- Mass–radius relationship $(M_p R_p)$

3 Summary

Contents

1 Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass-semi-major axis diagram (M_p-a)
- Mass–radius relationship $(M_p R_p)$

3 Summary

Disc structure and evolution

- Standard α -viscosity, 1+1D disc (parametrised/numerical)
- Internal (central star) + external (cluster stars) photoevaporation
- Initial profile: theory/observations

Disc structure and evolution

- Standard α -viscosity, 1+1D disc (parametrised/numerical)
- Internal (central star) + external (cluster stars) photoevaporation
- Initial profile: theory/observations

Open question: Growth of solids from μm to $\sim km$

- Two-body coagulation/self-gravity, high $au_{
 m runaway}$ dependence on turbulence, \ldots
- Start with bimodal: 0.6 M_\oplus protoplanet + 100-km planetesimals
- \Rightarrow Need more results from specialised models

(Birnstiel et al. 2010, Ormel & Okuzumi 2013, Johansen et al. 2009, 2014, etc.)

Disc structure and evolution

Orbital migration

Planet–disk interaction \rightarrow migration + e, i damping

- 2/3D rad.-hydro simulations expensive
- Migration rates: simulations / theory

(e.g. Kley & Nelson 2012, Dittkrist et al. 2014, Paardekooper et al. 2011, 2014)

Orbital migration

Planet–disk interaction \rightarrow migration + e, i damping

- 2/3D rad.-hydro simulations expensive
- Migration rates: simulations / theory
- Isothermal \rightarrow too fast Type-I rate

(e.g. Kley & Nelson 2012, Dittkrist et al. 2014, Paardekooper et al. 2011, 2014)

Orbital migration

Planet-disk interaction \rightarrow migration + e, i damping

- 2/3D rad.-hydro simulations expensive
- Migration rates: simulations / theory
- Isothermal \rightarrow too fast Type-I rate
- \Rightarrow Motivated theoretical developments
 - Find: thermal structure is crucial.
 - \star Compare timescales \rightarrow which regime

(e.g. Kley & Nelson 2012, Dittkrist et al. 2014, Paardekooper et al. 2011, 2014)

Contents

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass–semi-major axis diagram (M_p-a)
- Mass–radius relationship $(M_p R_p)$

3 Summary

Selected physical ingredients 000000 Planet-related modules

Planet-planet interactions

- Effects: competitive accretion, MMR, collisions, ejections, ...
- Computation: explicit N-body / statistical (timescales) approach

(Ida & Lin 2010, Ida et al. 2013, Alibert et al. 2013)

Gas accretion rate: min($\dot{M}_{\text{thermal}}, \dot{M}_{\text{disc}}$)

- Semi-analytical approach (Ida & Lin): $\dot{M}_{\rm thermal} \simeq M_p / \tau_{\rm KH} \propto M_p^{4-5}$
- Solution of standard structure equations (Alibert, Benz, Mordasini)

Gas accretion rate: min($\dot{M}_{\text{thermal}}, \dot{M}_{\text{disc}}$)

- Semi-analytical approach (Ida & Lin): $\dot{M}_{\rm thermal} \simeq M_p / \tau_{\rm KH} \propto M_p^{4-5}$
- Solution of standard structure equations (Alibert, Benz, Mordasini)

Key for structure and $\dot{M}_{thermal}$: atmospheric opacity $\kappa_{atm} \ll \kappa_{ISM}$

• Detailed grain evolution model

(e.g. Podolak 2003, Movshovitz et al. 2010)

Gas accretion rate: $min(\dot{M}_{thermal}, \dot{M}_{disc})$

- Semi-analytical approach (Ida & Lin): $\dot{M}_{\rm thermal} \simeq M_p / \tau_{\rm KH} \propto M_p^{4-5}$
- Solution of standard structure equations (Alibert, Benz, Mordasini)

Key for structure and $\dot{M}_{thermal}$: atmospheric opacity $\kappa_{atm} \ll \kappa_{ISM}$

Gas accretion rate: min($\dot{M}_{\text{thermal}}, \dot{M}_{\text{disc}}$)

- Semi-analytical approach (Ida & Lin): $\dot{M}_{\rm thermal} \simeq M_p / \tau_{\rm KH} \propto M_p^{4-5}$
- Solution of standard structure equations (Alibert, Benz, Mordasini)

Key for structure and $\dot{M}_{thermal}$: atmospheric opacity $\kappa_{atm} \ll \kappa_{ISM}$

• Detailed grain evolution model

(e.g. Podolak 2003, Movshovitz et al. 2010)

- Fixed reduction of ISM opacity
 - Classic, arbitrary: $f_{\kappa} = 2 \%$
 - $f_\kappa=0.3~\%$ (Mordasini et al. 2014a)
- Analytical grain evolution model

(Mordasini 2014b, Ormel 2014)

Overview

Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass–semi-major axis diagram (M_p-a)
- Mass-radius relationship $(M_p R_p)$

3 Summary

Comparisons to observations: constraints

Contents

Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass-semi-major axis diagram (M_p-a)
- Mass–radius relationship $(M_p R_p)$

3 Summary

Comparing population synthesis to data

- Need to simultaneously satistify constraints on:
 - Series Frequencies: overall, by planet type, f(stellar type), f([Fe/H])
 - **2** Planet properties: M_p , R_p , composition, spectrum
 - Syst. architectures: a_P , e, planet type as $f(a_P)$, multiple-planet

Comparing population synthesis to data

- Need to simultaneously satistify constraints on:
 - Series Frequencies: overall, by planet type, f(stellar type), f([Fe/H])
 - **2** Planet properties: M_p , R_p , composition, spectrum
 - Syst. architectures: a_P , e, planet type as $f(a_P)$, multiple-planet

and their joint distributions

Comparing population synthesis to data

- Need to simultaneously satistify constraints on:
 - Series Frequencies: overall, by planet type, f(stellar type), f([Fe/H])
 - **2** Planet properties: M_p , R_p , composition, spectrum
 - Syst. architectures: a_P , e, planet type as $f(a_P)$, multiple-planet and their joint distributions
- Mass, radius: good agreement, semi-major axis problematic

Comparing population synthesis to data

- Need to simultaneously satistify constraints on:
 - Series Frequencies: overall, by planet type, f(stellar type), f([Fe/H])
 - **2** Planet properties: M_p , R_p , composition, spectrum
 - Syst. architectures: a_P , e, planet type as $f(a_P)$, multiple-planet and their joint distributions
- Mass, radius: good agreement, semi-major axis problematic
- \star Good agreement: support for planet formation theory
 - Number of parameters \ll number of constraints
 - Small range for some parameters \Rightarrow included physics important
- Disagreements show where further work is needed

Comparing population synthesis to data

- Need to simultaneously satistify constraints on:
 - Service Frequencies: overall, by planet type, f(stellar type), f([Fe/H])
 - **2** Planet properties: M_p , R_p , composition, spectrum
 - Syst. architectures: a_P , e, planet type as $f(a_P)$, multiple-planet and their joint distributions
- Mass, radius: good agreement, semi-major axis problematic
- ★ Good agreement: support for planet formation theory
 - Number of parameters \ll number of constraints
 - Small range for some parameters \Rightarrow included physics important
- Disagreements show where further work is needed

Key point

 \star With population synthesis: can compare specialised models to data! \star

Mass-semi-major axis diagram (M_p-a)

Comparisons to observations: constraints

Contents

Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass-semi-major axis diagram (M_p-a)
- Mass-radius relationship $(M_p R_p)$

3 Summary

Selected physical ingredients 000000

Mass-semi-major axis diagram (Mp-a)

Main features

Mass-semi-major axis diagram (Mp-a)

Planetary Initial Mass Function (PIMF)

Solid + gas accretion rate \rightarrow PIMF

Predictions of CA (features):

- Decreasing $N_{\text{super-jupiters}}(M_p)$
- Gas-giant plateau
- Planet desert at \approx 30 M_{\oplus}
- Neptunian bump
- Large rise towards low masses

Mass–semi-major axis diagram (Mp-a)

Planetary Initial Mass Function (PIMF)

Solid + gas accretion rate \rightarrow PIMF

Predictions of CA (features):

- Decreasing $N_{\text{super-jupiters}}(M_p)$
- Gas-giant plateau
- Planet desert at pprox 30 M_{\oplus}
- Neptunian bump
- Large rise towards low masses

Mass-radius relationship (M_p-R_p)

Comparisons to observations: constraints

Contents

Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass-semi-major axis diagram (M_p-a)
- Mass-radius relationship $(M_p R_p)$

3 Summary

Selected physical ingredients 000000 <u>Mass-radius relationship</u> (*Mp*-*Rp*) Comparisons to observations: constraints

Summary

Mass-radius relationship and composition

Late-time mass-radius relationship

- Good overall agreement
- Shape: prediction of CA

Comparisons to observations: constraints

Mass–radius relationship (Mp–Rp)

Mass-radius relationship and composition

- Good overall agreement
- Shape: prediction of CA

- Simulation: \approx 10- M_{\oplus} -core line?
- "See" runaway accretion!

Comparisons to observations: constraints

Mass-radius relationship and composition

- Good overall agreement
- Shape: prediction of CA

- Simulation: ≈ 10 - M_{\oplus} -core line?
- "See" runaway accretion!
- Need planet-planet scattering

Selected physical ingredients 000000 Comparisons to observations: constraints

Summary

Mass-radius relationship (M_p-R_p)

Radius distribution

P < 50 days ($a_P <$ 0.3 AU for 1 M_{\odot}), Kepler data

- Only H/He-atmospheres \rightarrow ignore < 2 R_p
- Increase at low M_p + solid-dominated \rightarrow increase at small R_p
- Using smaller bins: see Jovian peak (from flat $M_p(R_p)$ at 3 M_J)

Selected physical ingredients 000000

Mass-radius relationship (Mp-Rp)

Radius distribution II

 \Rightarrow Constraints on atmospheric opacity

Overview

Selected physical ingredients

- Disc-related modules
- Planet-related modules

2 Comparisons to observations: constraints

- General comments
- Mass-semi-major axis diagram (M_p-a)
- Mass-radius relationship $(M_p R_p)$

The main power of population synthesis

With population synthesis: can compare specialised models with data

- Type I migration rate
- Grain opacity

The main power of population synthesis

With population synthesis: can compare specialised models with data

- Type I migration rate
- Grain opacity

- ★ Predictions for the Planetary Initial Mass Function
 - Change of slope at \approx 30 M_{\oplus}
 - 2 Large increase at low masses

The main power of population synthesis

With population synthesis: can compare specialised models with data

- Type I migration rate
- Grain opacity

- ★ Predictions for the Planetary Initial Mass Function
 - Change of slope at \approx 30 M_{\oplus}
 - I Large increase at low masses
- ★ Mass–radius relationship similar to data

The main power of population synthesis

With population synthesis: can compare specialised models with data

- Type I migration rate
- Grain opacity

- ★ Predictions for the Planetary Initial Mass Function
 - Change of slope at \approx 30 M_{\oplus}
 - I Large increase at low masses
- ★ Mass–radius relationship similar to data
- \star Evolves with sub-fields \rightarrow better understand planet formation

The main power of population synthesis

With population synthesis: can compare specialised models with data

- Type I migration rate
- Grain opacity

- ★ Predictions for the Planetary Initial Mass Function
 - Change of slope at \approx 30 M_{\oplus}
 - I Large increase at low masses
- ★ Mass–radius relationship similar to data
- \star Evolves with sub-fields \rightarrow better understand planet formation

Additional material

6 Planetary structure

6 Formation tracks in the mass-semi-major axis plane

Additional material

Ianetary structure

6 Formation tracks in the mass-semi-major axis plane

Initial conditions

1 Metallicity

assume same in star and disk

Densitiy 1 .0.5 Stellar [Fe/H] from spectroscopy. Gaussian distribution for [Fe/H] with μ ~0.0, σ~ 0.2. (e.g. Santos et al. 2003)

2 Disk (gas) masses

Thermal continuum emission from cold dust at mm and submm wavelengths (Ophiuchus nebula).

2

-0.5

[Fe/H] or [Me/H]

4 Initial semimajor axis of the seed embryo:

Analytical work (Lissauer & Steward 1992) and numerical simulations (Kokubo & Ida 2000): spacing between bodies $\Delta \propto a$

$$p(a)da \propto \frac{da}{\Delta} \propto \frac{da}{a} = dlog(a) \propto const.$$

5 Stellar mass

C. Mordasini

Additional material

9 Planetary structure

Formation tracks in the mass-semi-major axis plane

Differentiated solid core (Fe & Ni + silicates + ices, from formation)

• Modified polytrope: $\varrho(P) = \varrho_0 + cP^{0.5-0.6}$ (Seager et al. 2007)

Differentiated solid core (Fe & Ni + silicates + ices, from formation)

- Modified polytrope: $\varrho(P) = \varrho_0 + cP^{0.5-0.6}$ (Seager et al. 2007)
- Luminosity \rightarrow cooling:
 - Radioactive decay important at late times (and early?)

Recent and coming developments:

- Atmospheric escape
- Bloating mechanisms
- Detailed equation of state for the core
- Cooling of the core

Additional material

Ianetary structure

6 Formation tracks in the mass-semi-major axis plane

Formation tracks

1 M_{\odot} , $\alpha = 7 \times 10^{-3}$, non-isothermal Type I (no reduction), 1 seed per disc

Additional material

Planetary structure

6 Formation tracks in the mass-semi-major axis plane

Mordasini et al. 2011

