Understanding different observed features of transition disks by modeling
dust evolution with one or multiple planets interacting with the disk

IRS 48, Van der Marel et al. (2013) SR21, Follette et al. (201 3)
Pérez et al. (2014)
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Outline

Brief introduction: particle trapping.
Models:

hydrodynamical models of planet-disk interactions.
dust evolution models.

radiative transfer.

Applications: HD135344B (A. Garufi talk) , IRS48 (N. van der Marel talk),
HD100546 & SR21, and spectral index of transition disks (this talk).

Conclusions
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Introduction
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Transition disks are excellent candidates to study

particle trapping
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Trapping of dust particles
in pressure maxima
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e.g. Klahr & Henning (1997) ; Fromang & Nelson (2005); Johansenl’
et al. (2009); Pinilla et al. (2012a)

* Dead Zones

* Evaporation Front
* Giant Planets

* MRI effects

Particle
Traps
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Models
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Models: Combination of gas/dust evolution and
radiative transfer

2D Hydrodynamical simulations of planet-disk Quasi-steady state is reached
interactions using FARGO (Masset, 2000) | " (< 1000 orbits = 10-2- 10" Myr)
Azimuthally average

Settlipg

Birnstiel et al. (2010) Turbulence [° [
Dust Evolution Models - ?' l 1 l l
(radial direction) 71\& ‘ % o' “.‘ ?adigl‘Drift 1
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N

Radiative Transfer
Modeling (e.g. RADMC, MCMax)

Talk to me for details of
the models © More N 4
than happy to explain

Direct comparison between models and available observations
them to you
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- Results & Applications
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Previous Results |

Pressure Gradient

Pressure Gradient: location of pressure Dust Filtration: also depends
maxima depends on the mass of the planet on the mass of the planet
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Pinilla, P.; Benisty M. & Birnsitiel T. (2012b)
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Previous Results |l

) Vortices may also form and create strong
Segregation of particles in the radial direction azimuthal contrast at mm-wavelengths (e.g IRS

1o’ ‘ ‘ ‘ 48 and HD142527)
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See also: Ataiee et al. (2013), Birnstiel
et al. (2013), Fung et al. (2014), Zhu et
al. (2014)

Example of observations: HD135344B
(A. Garufi’s talk)

See also de Juan Ovelar et al. (2013)
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New Implications: spectral index of transition disks

Size dependence of the dust opacity z Spectral index may radially vary

Credit: M. Min E
small grains dominate
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If /3 < ], dust grqin have grown to Variations of the opacity index have been resolved for some

classical disks (e.g. Guilloteau et al. 2011, Perez et al., 2012

sizes > 1mm
& Trotta et al. 201 3)

Transitions disks: A change in the cavity radius impacts the spatially integrated spectral index
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The mm-spectral index for transition disks

The mm-spectral index

KS two-sided test: very low probability (K 1%) that the two

may increase with the samples are similar.

cavity radius.

/\..(/

We predict a positive trend between Rcav and & mm. Multi-
wavelength observations with high angular resolution are needed
to prove our predictions
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Multiple planets? A beautiful example HD 100546
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Open question:

Can we constrain the age of the outer planet by

dust evolution models?

pressure
gradient

negative
pressure
gradient

radius
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See e.g. Acke & van den Ancker (2006) and Quanz (2013)

The two rings-like emission supports the :
idea of particle trapping by two
massive planets embedded in the disk!

Walsh et al. (201 4)
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Real (Jy)

Hinting the age of the

2.5

planet in HD100546
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Another example of multiple planets: SR21
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(Ponfoa”;'z\;vnge?‘sq;mgOOS) Smooth polarized radial intensity (~ r3) mm-cavity radius at 36 AU,
PP ’ Follette et al. (2013) low-contrast asymmetry

Dust ring - Pionier instrument
(Benisty, priv. comm.)

Andrews et al. (2011), Pérez et al. (2014)

Questions:
1. What produce the inner ring at 7AU?

2. How to have a smooth distribution of small grains from 14 AU?2
3. How to create the asymmetry?
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Two planets models

Questions:

1. What produce the inner ring at 7AU?
A potential planet at ~5AU.
1 Mjup planet is enough to form a ring of gas and dust at ~7AU.

gy =6 X107 2. How to have a smooth distribution of small grains from 14 AU?

The outer planet cannot be very massive. High diffusion of
particles i.e. when disk viscosity is & ~102 helps to have a smooth
distribution of small grains. Less spatial segregation between small
and large grains. Can be also the case of of HD1691422 See
Osorio et al. (2014)

3. How to create the asymmetry?2
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Pinilla o al. (submitted fo A&A) In‘such case.f., ‘vor’rex‘formq’rlon is very unlikely.
Disk eccentricity?¢ Spiral arms?
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Conclusions

The integrated spectral index in higher for transition disks than for
regular protoplanetary disks.

For transition disks, there is a high probability of a positive relation
between the spectral index and the cavity size.

Observations of HD100546 reveal a two-ring like emission consistent

with tapping by two companions. The outer companion must be younger
than the inner companion.

To have a smooth distribution of small grains while large grains are

located at pressure maxima, high turbulence is needed. In such cases,
long-lived vortices are unlikely to exist.
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THANK YOU!
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