"Old" pre-main-sequence stars and a second chance for planet formation

Peter Scicluna

Uni Kiel & ESO, Garching

9th September 2014

Giovanni Rosotti (MPE, USM, IoA) Leonardo Testi (ESO, INAF) Jim Dale (Excellence Cluster Universe)

A&A, 566, L3

$\mathsf{Star}\ \mathsf{formation}\ +\ \mathsf{discs}$

- Stars form in collapsing clouds
- $\bullet \ \mbox{Residual angular momentum} \Rightarrow \mbox{disc} \\ \mbox{formation} \label{eq:residual}$
- Disc observed indirectly through
 - IR Excess (stellar flux reprocessed by dust disc)
 - UV Excess & Spectral lines (accretion region)

Isella (2006)

Timescales - Disc dissipation

- $\tau_{\rm disc} \sim 2-3~{
 m Myr}$
- (Caution: Bell et al. (2013) suggest $au_{
 m disc} \sim$ 5 Myr!)
- Strict constraint on planet formation!

Fedele et al. (2010)

"Old" accretors

 Large SFRs (Galactic, SMC, LMC) contain population of "Old" (> 10 Myr) accretors

de Marchi et al. (2011a)

"Old" accretors

de Marchi et al. (2011b)

- Large SFRs (Galactic, SMC, LMC) contain population of "Old" (> 10 Myr) accretors
- Accrete at similar rates to "young" PMS
- Also show NIR excess

9th September 2014 4 / 14

"Old" accretors

de Marchi et al. (2011a)

• Large SFRs (Galactic, SMC, LMC) contain population of "Old" (> 10 Myr) accretors

- Accrete at similar rates to "young" PMS
- Also show NIR excess
- Different spatial distribution to "young" stars
- $\bullet \ \ \text{Lower X-ray luminosities} \to \text{old}$

- Not really old?
- Not really accretors?

- Not really old?
- Not really accretors?

- Not really old?
- Not really accretors?
- Tail-end of huge population?

- Not really old?
- Not really accretors?
- Tail-end of huge population? $\implies M_{\rm init} \sim 10^{7-9} M_{\odot}$

- Not really old?
- Not really accretors?
- Tail-end of huge population? \Longrightarrow $M_{\rm init} \sim 10^{7-9} {\rm M}_{\odot}$
- Not the original disc?

Bondi-Hoyle Accretion?

- Star moves through medium
- Accretes material

Bondi-Hoyle Accretion?

- Star moves through medium
- Accretes material
- $\bullet\, \rightarrow\, UV,$ lines, but no disc

- SFRs are clumpy
- Star formation happens in part of cloud

- SFRs are clumpy
- Star formation happens in part of cloud
- $\bullet~$ Stars disperse $\rightarrow~$ could enter a clump

- SFRs are clumpy
- Star formation happens in part of cloud
- $\bullet~$ Stars disperse $\rightarrow~$ could enter a clump
- Accrete while passing through clump
- $\bullet \ {\sf Residual \ angular \ moment} \to {\sf disc \ formation}?$

- SFRs are clumpy
- Star formation happens in part of cloud
- $\bullet~{\rm Stars}~{\rm disperse} \to {\rm could}~{\rm enter}~{\rm a}~{\rm clump}$
- Accrete while passing through clump
- $\bullet \ {\sf Residual \ angular \ moment} \to {\sf disc \ formation}?$
- ullet \Rightarrow accretion observable for longer

• Simple Monte Carlo model, realistic SFR parameters

Parameter	Values
$f_{ m V}$	$10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}$
$\sigma_{ m v}$	1 km s^{-1}
C _s	0.3 km s ⁻¹
$R_{ m cl}$	0.1 рс
n _{cl}	$10^4 {\rm cm}^{-3}$

- Simple Monte Carlo model, realistic SFR parameters
- Probabilistic star-clump interactions

Parameter	Values
$f_{ m V}$	$10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}$
$\sigma_{ m v}$	1 km s^{-1}
$C_{ m S}$	0.3 km s ⁻¹
$R_{ m cl}$	0.1 pc
n _{cl}	$10^4 { m cm}^{-3}$

- Simple Monte Carlo model, realistic SFR parameters
- Probabilistic star-clump interactions
- Accretion \rightarrow disc, viscous evolution

Parameter	Values
$f_{ m V}$	$10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}$
$\sigma_{ m v}$	1 km s^{-1}
C _s	0.3 km s ⁻¹
$R_{ m cl}$	0.1 рс
n _{cl}	$10^4 {\rm cm}^{-3}$

- Simple Monte Carlo model, realistic SFR parameters
- Probabilistic star-clump interactions
- Accretion \rightarrow disc, viscous evolution
- Derive fraction of observable accretors

Parameter	Values
$f_{ m V}$	$10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}$
$\sigma_{ m v}$	1 km s ⁻¹
$C_{ m s}$	0.3 km s^{-1}
$R_{ m cl}$	0.1 pc
n _{cl}	$10^4 {\rm cm}^{-3}$

• Upper limit - Bondi-Hoyle accretion only for uniform medium

Limitations

- Upper limit Bondi-Hoyle accretion only for uniform medium
- Also no
 - clump motion
 - winds
 - magnetic fields
 - ...

Limitations

- Upper limit Bondi-Hoyle accretion only for uniform medium
- Also no
 - clump motion
 - winds
 - magnetic fields
 - ...
- $\bullet~{\it f}_{\rm V}$ & viscosity parameters highly uncertain

Results

 $\Rightarrow {\rm significant\ fraction\ of\ stars\ re-accrete} \\ {\rm Accretion\ observable} \\ \sim {\rm right\ numbers\ of\ "Old"\ accretors} \end{cases}$

A Second Epoch of Planet Formation?

- Significant fraction accrete > 1 MMSN
- New planets?
- Different composition?

... or Destruction?

- What if planets already exist?
- Planet/disc interactions could
 - trigger migration
 - alter eccentricity/inclination
- $\bullet \to \mathsf{potential} \ \mathsf{chaos}$

(Credit: James Garry, Fastlight)

9th September 2014 12 / 14

Summary

- Large SFRs have multiple populations of accreting stars
- Ages appear older than allowed in canonical model
- Simple model based on Bondi-Hoyle accretion qualitatively explains observations (size and distribution of populations)
- Potential consequences for planet formation and evolution are manifold and unpredictable

Implementation - Monte Carlo + Viscous Evolution

- Draw random stars from IMF $(n(M) \propto M^{-\alpha}, 0.7M_{\odot} < M < 3.2M_{\odot})$
- Each step check for encounter with dense clump $(P \propto f_{
 m V})$
- Calculate $\dot{M}_{
 m BH}(t)$ and $\Delta M_{
 m BH}(t)$
- Pass to viscous evolution model
- Simple treatment of disc formation & evolution
- $ullet
 ightarrow \dot{M}_*(t)$ for many stars
- Integrate over *t* to get observable fractions

Parameter	Values
C	10-2 10-3 10-4 10-5
$t_{ m V}$	$10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}$
$N_{ m stars}$	$10^5, 10^5, 10^6, 10^7$
α	2.35
$\sigma_{ m v}$	1 km s^{-1}
C _S	0.3 km s^{-1}
$R_{ m cl}$	0.1 pc
n _{cl}	$10^{4} {\rm cm}^{-3}$