

### **Gas and Dust Modelling in Protoplanetary Disks**

#### Peter Woitke, St Andrews, Scotland, UK





Kiel, Planet Formation & Evolution, Sept 8, 2014

# **Protoplanetary Disks**



© Henning & Semenov (2013)



### Analysis and Modelling of Multi-wavelength Observational Data from Protoplanetary Discs

FP7-SPACE 2011 collaboration

DiscAnalysis

| St Andrews         | Vienna                | Amsterdam   | msterdam Grenoble           |                |
|--------------------|-----------------------|-------------|-----------------------------|----------------|
|                    |                       |             |                             |                |
| P. Woitke          | M. Güdel              | R. Waters   | F. Ménard                   | I. Kamp        |
|                    |                       |             |                             |                |
| Greaves Ilee Rigon | Dionatos Rab Liebhart | Min Dominik | Thi Pinte Carmona Anthonioz | Antonellini    |
| sub-mm to cm       | X-rays                | near-mid IR | near-far IR                 | near IR - mm   |
| coordination       | obs./mod.             | mod./obs.   | obs./mod.                   | mod./obs.      |
| JCMT, eMERLIN      | XMM, Herschel         | VLT, JWST   | HST, Herschel               | Herschel, JWST |
| astrobiology       | high energy           | dust mod.   | interferometry              | gas mod.       |

multi- $\lambda$  data collection X-ray to cm (archival and proprietary) coherent, detailed modelling of gas & dust throughout the disc using disk modelling software ProDiMo, MCMax, MCFOST aim: disc shape, temperatures, dust properties, chemistry in the birth-places of exoplanets



## simulated observations

SED and line fluxes  $dist = 140.0 \, pc$ -9 R = 50000– star + UV -10  $\log v \; F_v \; [erg/cm^2/s]$ -11 -12 -13 100.0 1000.0 0.1 1.0 10.0 λ [µm]

DIANA

DiscAnalysis

#### continnum images



1.5

1.0 E

0.5

0.0

-8

#### velocity profile



v = -2.01 km/

v = -0.39 km/s

0 x [AU] v = 1,18 km

0 x [AU]

y [AU]

channel maps

v = 0.39 km/s

0 x [AU] v = 2.01 km/s 100 200200

v = 0.00 km/s

0 100 20200 x [AU] = 1.59 km/s

x [AU] v = 0.78 km/

0 x [AU] v = 2.44 km/s

0 x [AU]

#### emission line maps



<sup>13</sup>CO line @ 220.399 GHz from an edge-on disk

## "standards" for disk modelling



DiscAnalysis

DIANA

### "Standard" dust opacities for disks

→ Michiel Min, University of Amsterdam, NL, 2014 in prep.

#### **Opacities of aggregates**

DiscAnalysis

JIANA

- DDA, 100 dipoles/GRF, up to 8000 GRFs (4µm)
- results include phase function, polarisation, ...



#### **DIANA dust opacity standard**

- effective mixture of ~60% laboratory amorphous silicates (Mg<sub>0.7</sub>Fe<sub>0.3</sub>SiO<sub>3</sub>, Jena)
  - ~15% amorphous carbon (Zubko 1996, BE-sample)
  - ~25% porosity
- powerlaw size distribution f(a) ~ a<sup>-pow</sup> (a<sub>min</sub> = 0.05 μm, a<sub>max</sub> = 3 mm, a<sub>pow</sub> ~ 3...4)
- distribution of hollow spheres (hollow volume ratio 0 ... 0.8)

#### Fit with "simple" methods



## usage of UV and X-ray data



DiscAnalysis





### one example: CY Tau

→ Peter Woitke, St Andrews, UK, 2014 in prep



## **CY Tau: line & image results**



### How to decrease <sup>12</sup>CO/<sup>13</sup>CO flux ratio?



### How to decrease <sup>12</sup>CO/<sup>13</sup>CO flux ratio?



=> 12CO/13CO is not necessarily a good M<sub>disk</sub> tracer !

### The R-branch CO fundamental with FLiTs ...



# **Conclusions CY Tau ...**

- steep Spitzer-slope and PACS photometry suggests that CYTau has a "pre-transitional" disk with a hole at ~ (1-5) AU
- cm-data implies that the outer zone is massive ~ 0.05 M<sub>sun</sub>
- SMA continuum and <sup>12</sup>CO data are consistent with a small disk R<sub>taper</sub> ~ 50 AU
- observed <sup>12</sup>CO/<sup>13</sup>CO ratio ~2 suggests that outer edge is sharp  $\gamma \sim -0.2$
- [OI]63 flux suggests that the outer disk is flared and settled
- SED and CO ro-vib can be fitted only if the inner wall of the outer zone is situated in the shadow of the inner disk
- CO ro-vib data is characterized by LTE emission of a warm low-density gas, possibly powered by viscous heating
- last two points require a *tenuous high inner zone* with a *break in surface density* between inner and outer zone





#### disk structure deduced from multi- $\lambda$ continuum & line observations





## **MRI with chemistry & ionisation**

#### → Wing-Fai Thi, Garching, Germany



#### **MRI instability**

- creates viscosity, causes accretion, causes heating
- requires low resistivity, low ambipolar diffusion
- requires to know electron concentration, temperature

#### **Disk chemistry**

- takes into account additional heating
- predicts electron concentration, temperature

#### **Our approach**

- make a consistent model !
  - → predict  $\alpha_{vis}(r,z)$
  - $\rightarrow$  predict v<sub>turb</sub>(r,z)



## **MRI with chemistry & ionisation**

→ Wing-Fai Thi, Garching, Germany



W.F.-Thi, G. Lesur, et al. 2014, A&A in prep.



## **MRI with chemistry & ionisation**

 $\rightarrow$  Wing-Fai Thi, Garching, Germany



W.F.-Thi, G. Lesur, et al. 2014, A&A in prep.

## **Understanding, Analysis, Observers' Tools ...**





#### • EU FP7 project DIANA ...

- collects *multi-λ observational datasets* for ~80 T Tauri & Herbig Ae disks (continuum & line data)
- sets "standards" for disk modelling (dust opacities, chemistry, disk shape, ...)
- provides detailed, high-quality, *individual models of ~ 30 disks*
- performs analysis & cross-comparison of data & modelling results
- **EU FP7 project DIANA** attacks some basic physio-chemical processes
  - X-ray scattering
  - coupling between MRI and chemistry
  - gas inside *inner rim*
- EU FP7 project DIANA aims at
  - studying multi-λ *emission lines: Where do they form? What do they tell us?*
  - providing continuum and line analysis tools for observers
- see http://www.diana-project.com
  - → all modelling software available against co-author right
  - → observational data and modelling results will be available online ~ spring 2016





# mm-cm SED slope

→ J. Greaves, L. Rigon, P. Woitke, St Andrews University, UK, 2014, in prep



# **SED and mm-slope**

 $\rightarrow$  Peter Woitke & Laura Rigon, St Andrews University, UK

(Min et al. 2009)

#### Parameters of the betaGRID

| stellar parameter                                                                                              |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| fixed: T Tauri (K7), $T_{\text{eff}} = 4000 \text{ K}, L_{\star} = 1 L_{\odot}, M_{\star} = 0.7 M_{\odot},$    |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| $\frac{L_{\rm UV}/L_{\star}=0.01, \ L_{X}=10^{-5}L_{\odot}}{\rm disk share matrix}$                            |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| disk shape parameter                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| $M_{\rm dust}$                                                                                                 | disk mass $[M_{\odot}]$                                                                                                                         | 0.001, 0.003, 0.01, 0.03, 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| $R_{ m out}$                                                                                                   | outer disk radius $[AU]$                                                                                                                        | 100, 200, 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| $\epsilon$                                                                                                     | column density power index                                                                                                                      | 0.5, 0.75, 1.0, 1.25, 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                                                                                                | using $\Sigma(r) \propto r^{-\epsilon} \exp\left(-r/R_{\rm tap}\right)$                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| $H_0$                                                                                                          | scale height [AU] at $R_0 = 3$ AU                                                                                                               | 0.1, 0.14, 0.2, 0.28, 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| $\beta$                                                                                                        | flaring power $H(r) = H_0 \left(\frac{r}{R_0}\right)^{\beta}$                                                                                   | 1.04, 1.08, 1.12, 1.16, 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| fixed: $gas/dust = 100, R_{in} = 0.07 \text{ AU}, R_{tap} = R_{out}/4$                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| dust parameter                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| $a_{ m pow}$                                                                                                   | size power index $f(a) \propto a^{-a_{\text{pow}}}$                                                                                             | 3.35, 3.5, 3.65, 3.8, 4.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| $\alpha$                                                                                                       | turbulent mixing for settling                                                                                                                   | $10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| fixed: $a_{\min} = 0.05 \mu\text{m}, a_{\max} = 1 \text{mm}, \text{Dubrulle}(1995)$ -settling                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| $(45\% \text{ MgFeSiO}_4, 35\% \text{ Mg}_{0.5}\text{Fe}_{0.5}\text{SiO}_3, 15\% \text{ AC}, 5\% \text{ FeS})$ |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                | ellar par<br>fixed<br>fixed<br>$M_{dust}$<br>$R_{out}$<br>$\epsilon$<br>$H_0$<br>$\beta$<br>fixed<br>st parar<br>$a_{pow}$<br>$\alpha$<br>fixed | ellar parameterfixed: T Tauri (K7), $T_{eff} = 4000$ K, $L_{s}$ $L_{UV}/L_{\star} = 0.01, L_X = 10^{30}L_{\odot}$ sk shape parameter $M_{dust}$ disk mass $[M_{\odot}]$ $R_{out}$ outer disk radius $[AU]$ $\epsilon$ column density power index $using \Sigma(r) \propto r^{-\epsilon} \exp(-r/R_{tap})$ $H_0$ scale height $[AU]$ at $R_0 = 3$ AU $\beta$ flaring power $H(r) = H_0(\frac{r}{R_0})^{\beta}$ fixed: gas/dust = 100, $R_{in} = 0.07$ AU,st parameter $a_{pow}$ size power index $f(a) \propto a^{-a_{pow}}$ $\alpha$ turbulent mixing for settlingfixed: $a_{min} = 0.05 \mu\text{m}, a_{max} = 1 \text{mm}, I$ $(45\% \text{ MgFeSiO}_4, 35\% \text{ Mg}_{0.5}\text{Fe}_{0.5}\text{S})$ |  |  |  |  |  |  |

• 1000 disk models,  $T_{\text{dust}}(r, z)$  & SEDs computed with

•  $T_{\text{gas}}(r, z)$ , chemistry & emission lines computed with **ProDiMo** (Woitke et al. 2009)

#### Grid of models

- large variety of SED mm-fluxes (and slopes) for constant dust mass ( → dust settling!)
- observing mm-flux and slope may improve  $\ensuremath{\mathsf{M}}_{\ensuremath{\mathsf{dust}}}$  determination

#### Real stars (with new GBT cm-data!)

• only when including cm-data, large variety becomes obvious



# **Gas inside of the dust inner rim?**

#### → John Ilee, St Andrews University, UK









FeII line cooling

SiII line cooling

OIII line cooling



amount of such gas

2.31 2.29 2.30

2.32

Wavelength (Im)

## **Gas and Dust Temperatures**



# **Gas Heating & Cooling**

heating

cooling



# **Density Structure**



Woitke, Kamp & Thi (2009, A&A 501, 383); Thi, Woitke, Kamp (2011, MNRAS 412, 711)

# **Dust settling**

0.5 6 0.4 0.3 z / r z / r 0.2 0.1 0.0 1.0 10.0 100.0 0.1 r [AU]

gas (assumed): exponential tapering-off

#### *dust (calculated):* Dubrulle-settling $\alpha = 10^{-3}$





## **Overview of thermo-chemical models**

|                            | RT  | chemistry | X-rays       | heat & cool               | vert. struc. | transport |
|----------------------------|-----|-----------|--------------|---------------------------|--------------|-----------|
|                            |     |           |              |                           |              | & mixing  |
| Gorti, Hollenbach et al.   | *   | **        | $\checkmark$ | **                        | ***          | -         |
| Heinzeller, Normura et al. | *   | ***       | $\checkmark$ | **                        | ***          | *         |
| Bruderer et al.            | *** | **        | $\checkmark$ | **                        | (fixed)      | -         |
| Semenov, Bergin et al.     | *   | ****      | $\checkmark$ | $(T_{\rm g} = T_{\rm d})$ | (fixed)      | ***       |
| ProDiMo                    | **  | **        | $\checkmark$ | ***                       | ***          | -         |
| ProDiMo & MCFOST           | *** | **        | $\checkmark$ | ***                       | (fixed)      | -         |

Gorti, Hollenbach, Najita, Pascucci (2011, ApJ 735, 90) Heinzeller, Nomura, Walsh, Millar (2011, ApJ 731, 115) Bruderer, van Dishoeck, Doty, Herczeg (2012, A&A in press) Fogel, Bethell, Bergin, Calvet, Semenov (2011, ApJ 726, 29) Woitke, Thi, Kamp, Aresu, Meijerink, Spaans (various papers 2009–2012) Pinte, Ménard, Duchêne (2006, A&A 459, 797)