warm gas in 18 protoplanetary disks: the CO ladder probed from 50 to 500 K

Matthijs van der Wiel

Niels Bohr Institute & StarPlan, University of Copenhagen, Denmark (*until July 2014:* Institute for Space Imaging Science, U. of Lethbridge, Canada)

David Naylor (Lethbridge), Inga Kamp (Kapteyn, Groningen), François Ménard (Grenoble & U. de Chile, Santiago), Wing-Fai Thi (Grenoble), Peter Woitke (St. Andrews), Klaus Pontoppidan (STScI), Göran Olofsson (Stockholm)

(image credit: NASA JPL)

structure of a planet-forming disk

Herschel space observatory and SPIRE

Herschel (ESA) 3.5 m mirror diameter launched May 2009 mission ended April 2013

 SPIRE (Spectral and Photometric Imaging Receiver) designed, built and operated with Cardiff University (UK) as P.I. institute, and consortium including Lethbridge.

Herschel space observatory and SPIRE

Herschel (ESA) 3.5 m mirror diameter launched May 2009 mission ended April 2013

- SPIRE (Spectral and Photometric Imaging Receiver) designed, built and operated with Cardiff University (UK) as P.I. institute, and consortium including Lethbridge.
 - Photometer (camera)

Herschel space observatory and SPIRE

Herschel (ESA) 3.5 m mirror diameter launched May 2009 mission ended April 2013

- SPIRE (Spectral and Photometric Imaging Receiver) designed, built and operated with Cardiff University (UK) as P.I. institute, and consortium including Lethbridge.
 - Photometer (camera)
 - multi-detector Fourier Transform Spectrometer for spectral imaging: 200-700 μm / 500-1500 GHz

Herschel SPIRE survey of planet-forming disks

- total sample of 18 protoplanetary disks: 12 Herbig Ae/Be stars, 6 T Tauri stars
 - majority of data from GT1 (P.I. Göran Olofsson)
 - additional data from two other programs (Klaus Pontoppidan, Jeroen Bouwman)
- detect dust continuum, ¹²CO rotational lines, some ¹³CO; upper limits on low-energy H₂O, CH⁺
- data characteristics:
 - uninterrupted 450–1540 GHz / 666–195 μm range
 - angular resolution $17-41 \operatorname{arcsec} \Rightarrow \operatorname{disks} \operatorname{unresolved}$
 - spectral resolution $\nu/\Delta\nu \approx 400-1300 \Rightarrow$ spectral lines unresolved
- diffuse, extended emission subtracted using off-center detectors in SPIRE array

Herschel SPIRE dust continuum SEDs (Van der Wiel+, 2014)

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

Herschel SPIRE spectral line detections (Van der Wiel+, 2014)

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

SPIRE probes warm molecular gas

• CO lines in SPIRE band trace upper level energies ~50–500 K, impossible to observe comprehensively from the ground

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

SPIRE probes warm molecular gas

- CO lines in SPIRE band trace upper level energies ~50–500 K, impossible to observe comprehensively from the ground
 - ¹²CO is optically thick
 ⇒ probes surface layer

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

SPIRE probes warm molecular gas

- CO lines in SPIRE band trace upper level energies ~50–500 K, impossible to observe comprehensively from the ground
 - ¹²CO is optically thick
 ⇒ probes surface layer
 - ¹³CO is more optically thin
 ⇒ traces total amount of gas

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

HD 100546 – CO ladder: observations vs. models

HD 100546 - CO ladder: observations vs. models

HD 100546 - CO ladder: observations vs. models

physics and chemistry in the models

 both models explain observed ¹²CO ladder, within factor 3

physics and chemistry in the models

- both models explain observed ¹²CO ladder, within factor 3
- models include:
 - (2D) radiative transfer for dust and gas
 - photodissocation, chemistry (gas phase, grain surface)
 - detailed heating and cooling balance based on derived hydrostatic structure (from fit to dust SED)

- for HD 100546, observed ¹³CO is >10× stronger than ProDiMo model predicts
 - not straightforward to adjust model for optically thin ¹³CO without compromising good fit to ¹²CO by existing model

- for HD 100546, observed ¹³CO is >10× stronger than ProDiMo model predicts
 - not straightforward to adjust model for optically thin ¹³CO without compromising good fit to ¹²CO by existing model
- some ideas to tweak T_{gas} in upper layers of disk:
 - flaring geometry..
 - PAH abundance..
 - dust opacity (UV penetration) ...

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

- 'work in progress' model not designed to fit CO ladder *exclusively*
- many other constraints included in optimization of model fit:
 - spectral lines of e.g., H₂O, [OI]; dust SED; image profile;
 - ALMA CO spatial and velocity profile; CO scale height at 150 AU; ...

[CI] line at 809 GHz (370 µm) toward HD 100546

APEX, ground, Nov 2008 **upper limit <0.85 10⁻¹⁸ W m⁻²** (Panić+ 2010) high calibration uncertainties

> Herschel SPIRE, space, Aug 2010 detection: (7.6±3) 10⁻¹⁸ W m⁻² (Van der Wiel+ 2014) spectrally unresolved

- above two measurements are inconsistent!
 - for both, diffuse background is subtracted
 - SPIRE measurement: better absolute calibration, but kinematical origin unknown
- new, deeper observations with APEX will have the final word; *see next talk by Mihkel Kama*
- if SPIRE measurement is confirmed, this may mitigate discrepancies with [CI] flux predicted by existing model descriptions

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

Matthijs van der Wiel (NBI & StarPlan, Copenhagen)

thank you

This work is supported by CSA, NSERC and the EU FP-7 programme.

SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA).

