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What we want to simulate
We would like to interpret the observational data on the rotation curve of a galaxy, such as 
our Milky Way, by computing the speed for circular orbits as a function of the distance from 
the galactic centre. This speed depends on all the mass within a sphere of that radius. Since a 
spiral galaxy is composed of a central spherical bulge, a disk of gas and stars, a spherical halo 
of stars, and perhaps a spherical halo of dark matter, we have to sum up the contributions 
from each component. 

This calculation is quite similar to that of a system evolving in time: we compute the mass 
inside a certain radius by starting at the centre and then summing up all the contributions to 
the mass in the subsequent spherical shell. Instead of a evolution in time, we progress from 
the centre outward!

Having done the computation, we compare with observed data, and play with the parameters 
of the galaxy until we can best match the rotation curve. However, there is a general problem: 
the rotational speed is rather constant with radius … Our standard explanation is to postulate 
the existence of a spherical halo of dark matter, in which the visible galaxy sits, and you can 
determine the mass of that dark halo.

However, so far we have no independent evidence for the existence of that unseen dark 
matter, and therefore people have considered alternative explanations. One is MOND for 
MOdified Newtonian Dynamics, which assumes that Newton’s laws do not apply for the large 
scales, long times, and small accelerations that one finds in the Universe as they do in the 
minute context of our labs and the Solar System. You can explore how well this matches the 
galactic rotation curve.   



The equations 
The basic equation is quite trivial: it tells us how the mass m(r) of a sphere of radius r 
increases with radius, given the local mass density ρ(r):

                dm/dr   =   4 π r² ρ                                         (1)

How does the density r depend on radius in a galaxy? The matter is not distributed like a 
uniformly filled sphere, because the shape into which stars assemble is determined by the 
gravity of the stellar population itself, and by its geometrical shape … We shall use some 
reasonable recipes:

• For the bulge and the halo, we can use a “Plummer sphere”:
        ρ(r)    =     M / (4πa3) * (1 + (r/a)²)-5/2                               (2)
here M is the total mass in this component, and a is the scale radius, which determines 
the size into which the matter is concentrated. The density is largest in the centre, it 
falls off towards the exterior, and a can be regarded as the radius within which most of 
the mass is concentrated 

• There is also a sphere-shaped halo of old stars and globular clusters, which we can 
approximate by:
        ρ(r)    =     M / 109 * (a + r)-3.1                                          (3)
with the total mass M, and a scale radius a=0.5 kpc; the density of the stellar halo falls 
off with radius more rapidly than in a Plummer sphere! This formula is a simple fit to 
the star count data from our Milky Way. 

• For the disk, we shall use the approximation of a thin disk, whose projected density 
Σ(r) drops of exponentially with radius

           Σ(r)   =   M / (2π a²) * exp(– r/a)                                              (4)
      again, M is the total mass of this component and a is the radial scale length, which 
      determines how fast the density drops off. Since the disk has a non-spherical 
      geometry, its contribution to the mass m(r) inside radius r is computed somewhat 
      differently:

                dm/dr   =   2 π r Σ                                                                    (5)

How to solve the equations

We start at the centre r=0, where we know the mass m(0) = 0. We compute for that radius 
from (2), (3), and (4) the densities of all components. Next we consider the radius being 
increased by a small step ∆r and we compute from the densities using (1) and (5) for each 
component the increment of the masses inside radius r. Then we compute the mass inside that 
larger radius by:

        m(r+∆r)  = m(r)  + dm/dr * ∆r

At the new radius we repeat the procedure …
Since the rate dm/dr has a different formula for spherical and disk-like components, you can 
either compute the masses m(r) for each component separately and then add them up to the 
total mass m(r) inside radius r, or combine the equations (1) and (5) …
A galaxy has a diameter of about 30 kpc. Choose the radial step ∆r suitably small, say 0.1 
kpc, so that you get nice, smooth curves in the plots.



The circular speed 

At every radius, we then have the total mass m(r) inside radius r. Next, we compute the 
gravitational acceleration due to this mass

         g(r) =  G m(r)/r²
and from this we compute the orbital speed by noting that the gravitational acceleration is 
balanced by the centrifugal acceleration v²/r for a circular orbit, hence
                            ________
         vcirc(r) =    √  g(r) * r 

Units and constants 

It’s best to work in SI units: m, kg, s … so we have to convert the convenient numbers based 
on the units used in astronomy. Here are the respective constants in SI units:

 Gravitational constant       G = 6.67259 10-11   m3 kg-1 s-2

  1 solar mass      = 1.989 1030  kg

   kilo parsec  (about 3000 light years)      1 kpc   =  3.086 1019 m 

The observed rotation curve 

Here are the data for the Milky Way which I showed in my radio astronomy lecture:
r [kpc] v [km/s]

2 210
2.5 198
3.5 210
4.5 218
5.5 220
6.7 213
7 220

7.5 222
9.5 200

10.3 203
11.5 200
12.5 230
13.3 190
14.5 240
15.5 270
16.5 260
17.5 320
18.5 260



Galactic parameters 
For the Milky Way, we know the mass and the scale lengths of the visible components:

• The bulge:   MB = 1.3 1010 solar masses,  a = 0.4 kpc
• The disk :    MD = 6.5 1010 solar masses, a = 4 kpc
• The (visible) halo:  MH = 109 solar masses, a = 0.5 kpc  

With dark matter…
• Which values for the total mass and the scale parameter aDark Halo for a spherical halo 

would be required to match the observed data?
… and without: The MOND alternative
One common formulation of MOdified Newtonian Dynamics assumes the standard 
(Newtonian) gravitational acceleration gN (which we had computed as above) is modified in 
this way
          g * µ(g/a0)  = gN                       (6)
where µ(x) is a function which is equal to 1 for large values of the argument, but equal to x 
for small values. This function is not yet precisely known, it merely represents our first guess 
of what a modified gravity formula could be! There is no physical theory for that …If we take 
a simple form, such as µ(x) = x/(1+x), we can resolve Equation (6) analytically and get for the 
modified gravitational acceleration:
                           ____________
        g = [gN   + √gN  * (gN  + a0 )  ] / 2                     (7)

• Use this modified version, and see what value of the constant a0 you need to explain 
the Milky Way’s rotation curve, using just the bulge and the disk, whose matter is 
visible …

The constant a0 is about 10-10 m/s² and represents the acceleration above which our normal 
Newtonian laws apply, but below which the gravitational law is modified … 

Caveat: However, my description here is nothing but a brutal simplification! True 
calculations with MOND are much more complicated … but this gives you a bit of taste of 
what people are exploring as alternative explanations to get rid of that nasty ‘dark’ matter’!
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