| 
| subroutine  | initsources (this, Mesh, Physics, Fluxes, config, IO) | 
|   | Constructor of disk cooling module.  More...
  | 
|   | 
| subroutine  | infosources (this, Mesh) | 
|   | 
| subroutine  | updatecooling (this, Mesh, Physics, time, pvar) | 
|   | Updates the cooling function at each time step.  More...
  | 
|   | 
| elemental real function  | rosselandmeanopacity_new (logrho, logT) | 
|   | 
| elemental real function  | lambda_gray (Sigma, h, Tc, rho0, T0, Qf) | 
|   | Gray cooling.  More...
  | 
|   | 
| elemental real function  | lambda_gammie (Eint, t_cool_inv) | 
|   | Gammie cooling.  More...
  | 
|   | 
| subroutine  | finalize (this) | 
|   | 
 | 
| character(len=32), parameter  | source_name = "thin accretion disk cooling" | 
|   | 
| integer, parameter, public  | gray = 1 | 
|   | 
| integer, parameter, public  | gammie = 2 | 
|   | 
| integer, parameter, public  | gammie_sb = 3 | 
|   | 
| character(len=28), dimension(3), parameter  | cooling_name = (/ "Gray disk cooling ", "Gammie disk cooling ", "Gammie shearing box cooling" /) | 
|   | 
| real, parameter  | sqrt_three = 1.73205080757 | 
|   | 
| real, parameter  | sqrt_twopi = 2.50662827463 | 
|   | 
| real, dimension(8), parameter  | logkappa0 = (/ -10.8197782844, 35.2319235755, -4.60517018599, 177.992199341, -25.3284360229, -87.4982335338, 37.246826596, -3.3581378922 /) | 
|   | 
| real, dimension(8), parameter  | texp = (/ 2.0, -7.0, 0.5, -24.0, 3.0, 10.0, -2.5, 0.0 /) | 
|   | 
| real, dimension(8), parameter  | rexp = (/ 0.0, 0.0, 0.0, 1.0, 2./3., 1./3., 1.0, 0.0 /) | 
|   | 
| real, parameter  | t0 = 3000 | 
|   | 
source terms module for cooling of geometrically thin accretion disks 
- Author
 - Anna Feiler 
 
- 
Tobias Illenseer 
 
- 
Jannes Klee
 
Supported methods:
- Gray cooling  according to Hubeny [23] using opacities from Bell & Lin [1] . The Rosseland mean opacities are then computed using the interpolation formula of Gail 2003 (private communication).
 
- Simple cooling  model according to Gammie [18] with a constant coupling between dynamical and cooling time scale.
 
- Warning
 - use SI units for gray cooling 
 
 
  
  
      
        
          | elemental real function sources_diskcooling_mod::lambda_gray  | 
          ( | 
          real, intent(in)  | 
          Sigma,  | 
         
        
           | 
           | 
          real, intent(in)  | 
          h,  | 
         
        
           | 
           | 
          real, intent(in)  | 
          Tc,  | 
         
        
           | 
           | 
          real, intent(in)  | 
          rho0,  | 
         
        
           | 
           | 
          real, intent(in)  | 
          T0,  | 
         
        
           | 
           | 
          real, intent(in)  | 
          Qf  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
private   | 
  
 
Gray cooling. 
The cooling function is given by 
\[
    \Lambda= 2\sigma T_{eff}^4
 \]
 where \( \sigma \) is the Stefan-Boltzmann constant (see e. g. Pringle [42] ). If the disk is optically thick for its own radiation, one can use the radiation diffusion approximation and relate the effective temperature to the midplane temperature according to 
\[
    T_{eff}^4 = \frac{8}{3} \frac{T_c^4}{\tau_{eff}}
 \]
 where \( \tau_{eff} \) is an effective optical depth (see e. g. Hubeny [23] ). 
Definition at line 380 of file sources_diskcooling.f90.