sblintheo3D.f90 File Reference

Go to the source code of this file.

Functions/Subroutines

program sblintheo
 
subroutine makeconfig (Sim, config)
 Configuration of the initial data. More...
 
subroutine initdata (Mesh, Physics, pvar, cvar)
 Initializes the data. More...
 

Function/Subroutine Documentation

◆ initdata()

subroutine sblintheo::initdata ( class(mesh_base), intent(in)  Mesh,
class(physics_base), intent(in)  Physics,
class(marray_compound), intent(inout), pointer  pvar,
class(marray_compound), intent(inout), pointer  cvar 
)

Initializes the data.

Definition at line 243 of file sblintheo3D.f90.

◆ makeconfig()

subroutine sblintheo::makeconfig ( class(fosite Sim,
type(dict_typ), pointer  config 
)

Configuration of the initial data.

Definition at line 135 of file sblintheo3D.f90.

◆ sblintheo()

program sblintheo ( )
Test:
Program and data initialization for the linear theory test in a SB.
Author
Jannes Klee

References:

  • [gammie1996] Charles F. Gammie (1996). "Linear Theory of Magnetized, Viscous, Self-gravitating Gas Disks" The Astrophysical Journal 462: 725
  • [gammie2001] Charles F. Gammie (2001). "Nonlinear outcome of gravitational instability in cooling, gaseous disks" The Astrophysical Journal 553: 174-183
  • [paardekooper2012] Sijme-Jan Paardekooper (2012). "Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation" Monthly Notices of the Royal Astronomical Society, Volume 421, Issue 4, pp. 3286-3299.

The test can be either done thermal or isothermal and with or without gravity.

Test for the following modules:

  1. shearing boundaries (boundary_shearing_mod )
  2. fictious forces (sources_shearbox_mod )
  3. selfgravity (gravity_sboxspectral_mod )

Within the linear theory test the evolution of a shearing wave

\[ \Sigma = \Sigma_0 + \delta \Sigma\cos{\mathbf{k \cdot x}} \]

is examined. Additionally the background shear \( v_x = 0, v_y = -q \Omega x\) is set up and either the speed of sound (isothermal) or the pressure (thermal) is determined by the Toomre Criterion:

\[ Q \sim 1 = \frac{\Omega c_s}{\pi G \Sigma_0} = \frac{\Omega \sqrt{\gamma \frac{P}{\Sigma_0}}}{\pi G \Sigma_0}. \]

There are analytical solutions for the thermal and isothermal case [gammie2001] [paardekooper2012] [gammie1996] . A python script solving cases can be found in folder tools.

Todo:
{upload python script!}

Definition at line 72 of file sblintheo3D.f90.