Go to the source code of this file.
Functions/Subroutines | |
program | sblintheo |
subroutine | makeconfig (Sim, config) |
Configuration of the initial data. More... | |
subroutine | initdata (Mesh, Physics, pvar, cvar) |
Initializes the data. More... | |
Function/Subroutine Documentation
◆ initdata()
subroutine sblintheo::initdata | ( | class(mesh_base), intent(in) | Mesh, |
class(physics_base), intent(in) | Physics, | ||
class(marray_compound), intent(inout), pointer | pvar, | ||
class(marray_compound), intent(inout), pointer | cvar | ||
) |
Initializes the data.
Definition at line 243 of file sblintheo3D.f90.
◆ makeconfig()
Configuration of the initial data.
Definition at line 135 of file sblintheo3D.f90.
◆ sblintheo()
program sblintheo | ( | ) |
- Test:
- Program and data initialization for the linear theory test in a SB.
References:
- [gammie1996] Charles F. Gammie (1996). "Linear Theory of Magnetized, Viscous, Self-gravitating Gas Disks" The Astrophysical Journal 462: 725
- [gammie2001] Charles F. Gammie (2001). "Nonlinear outcome of gravitational instability in cooling, gaseous disks" The Astrophysical Journal 553: 174-183
- [paardekooper2012] Sijme-Jan Paardekooper (2012). "Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation" Monthly Notices of the Royal Astronomical Society, Volume 421, Issue 4, pp. 3286-3299.
The test can be either done thermal or isothermal and with or without gravity.
Test for the following modules:
- shearing boundaries (boundary_shearing_mod )
- fictious forces (sources_shearbox_mod )
- selfgravity (gravity_sboxspectral_mod )
Within the linear theory test the evolution of a shearing wave
\[ \Sigma = \Sigma_0 + \delta \Sigma\cos{\mathbf{k \cdot x}} \]
is examined. Additionally the background shear \( v_x = 0, v_y = -q \Omega x\) is set up and either the speed of sound (isothermal) or the pressure (thermal) is determined by the Toomre Criterion:
\[ Q \sim 1 = \frac{\Omega c_s}{\pi G \Sigma_0} = \frac{\Omega \sqrt{\gamma \frac{P}{\Sigma_0}}}{\pi G \Sigma_0}. \]
There are analytical solutions for the thermal and isothermal case [gammie2001] [paardekooper2012] [gammie1996] . A python script solving cases can be found in folder tools.
- Todo:
- {upload python script!}
Definition at line 72 of file sblintheo3D.f90.